On prendra soin de coller le sujet sur la copie. La note tiendra compte de la qualité de la rédaction et des justifications.

Exercice 1. 10 points

On considère le nombre complexe

$$z = 1 - \sqrt{3} + i(1 + \sqrt{3})$$

1. Ecrire z^2 sous forme algébrique

$$z^{2} = \left(1 - \sqrt{3} + i(1 + \sqrt{3})\right)^{2} = \left(1 - \sqrt{3}\right)^{2} + 2i(1 - \sqrt{3})(1 + \sqrt{3}) - (1 + \sqrt{3})^{2} = \left(1 - \sqrt{3}\right)^{2} - (1 + \sqrt{3})^{2} + 2i(1 - 3)(1 + \sqrt{3})^{2} = \left(1 - \sqrt{3}\right)^{2} + 2i(1 - 3)^{2} + 2i$$

c'est-à-dire:

$$z^2 = (1 - \sqrt{3} + 1 + \sqrt{3})(1 - \sqrt{3} - 1 - \sqrt{3}) - 4i = -2 \times 2\sqrt{3} - 4i = -4\sqrt{3} - 4i$$

2. Déterminer le module et un argument de z^2

$$|z^2| = |-4\sqrt{3} - 4i| = \sqrt{(-4\sqrt{3})^2 + (-4)^2} = \sqrt{48 + 16} = \sqrt{64} = 8$$

Un argument θ de z^2 vérifie $\cos \theta = \frac{-4\sqrt{3}}{8} = \frac{-\sqrt{3}}{2}$ et $\sin \theta = \frac{-4}{8} = -\frac{1}{2}$. Par conséquent :

$$\theta = -\frac{5\pi}{6} + 2k\pi \qquad \text{avec } k \in \mathbb{Z}$$

3. Indiquer le signe de la partie réelle de z et celui de la partie imaginaire, puis, à l'aide des propriétés sur le module et l'argument, déterminer le module et un argument de z. $1-\sqrt{3} < 0$ donc la partie réelle de z est négative, tandis que $1+\sqrt{3} > 0$ donc la partie imaginaire de z est positive.

Nous savons que $|z^2| = 8 \Longrightarrow |z|^2 = 8 \Longrightarrow |z| = \sqrt{8} = 2\sqrt{2}$.

De plus

$$arg(z^2) = -\frac{5\pi}{6} + 2k\pi \Longrightarrow 2arg(z) = -\frac{5\pi}{6} + 2k\pi \Longrightarrow arg(z) = -\frac{5\pi}{12} + k\pi$$

Ainsi il existe à deux π près deux arguments qui conviennent $arg(z) = -\frac{5\pi}{12}$ ou $arg(z) = -\frac{5\pi}{12} + \pi = \frac{7\pi}{12}$

Comme $-\frac{\pi}{2} < -\frac{5\pi}{12} < 0$, si l'argument de z valait $-\frac{5\pi}{12}$ la partie réelle et la partie imaginaire de z serait négative.

Par conséquent $arg(z) = \frac{7\pi}{12} + 2k\pi$ avec $k \in \mathbb{Z}$.

4. Déduire de ce qui précède $\cos \frac{7\pi}{12}$ et $\sin \frac{7\pi}{12}$ puis $\cos \frac{\pi}{12}$ puis $\sin \frac{\pi}{12}$

$$\cos \frac{7\pi}{12} = \frac{1-\sqrt{3}}{2\sqrt{2}}$$
 et $\sin \frac{7\pi}{12} = \frac{1+\sqrt{3}}{2\sqrt{2}}$

De plus $\frac{7\pi}{12} = \frac{\pi}{2} + \frac{\pi}{12}$ donc :

$$\cos\frac{\pi}{12} = \sin\frac{7\pi}{12} = \cos\frac{7\pi}{12} = \frac{1+\sqrt{3}}{2\sqrt{2}} \qquad \text{et} \qquad \sin\frac{\pi}{12} = \cos\frac{7\pi}{12} = \frac{1-\sqrt{3}}{2\sqrt{2}}$$

On prendra soin de coller le sujet sur la copie. La note tiendra compte de la qualité de la rédaction et des justifications.

Exercice 1. 10 points

1. Résoudre dans \mathbb{C} l'équation $z^2 + 2\sqrt{2}z + 4 = 0$.

Correction de l'interrogation n° 11

On appelle z_1 et z_2 les solutions de l'équation, z_1 ayant une partie imaginaire positive.

 $\Delta = 8 - 4 \times 4 = -8 < 0$ donc l'équation $z^2 + 2\sqrt{2}z + 4 = 0$ admet deux racines complexes conjugués que voici :

$$z_1 = \frac{-2\sqrt{2} + 2\sqrt{2}i}{2} = -\sqrt{2} + \sqrt{2}i$$
 et $z_2 = -\sqrt{2} - \sqrt{2}i$

- 2. Placer, dans le plan, muni d'un repère orthonormal direct $(O; \overrightarrow{e_1}, \overrightarrow{e_2})$ (unité graphique : 2 cm), les points : A d'affixe 2, B et C d'affixes respectives z_1 et z_2 , et I le milieu de [AB].
- 3. Démontrer que le triangle OAB est isocèle.

En déduire une mesure de l'angle $(\overrightarrow{e_1}; \overrightarrow{OI})$.

 $OA = |z_A| = 2$, $OB = |z_1| = \sqrt{(-\sqrt{2})^2 + \sqrt{2}^2} = 2$ donc le triangle OAB est isocèle. Le triangle OAB étant isocèle et I étant le milieu de [AB] alors :

$$(\overrightarrow{e_1}; \overrightarrow{OI}) = (\overrightarrow{e_1}; \overrightarrow{OB})/2 = arg(z_1)/2$$

Si on note $\theta = arg(z_1)$ celui ci vérifie $\cos \theta = \frac{-\sqrt{2}}{2}$ et $\sin \theta = \frac{\sqrt{2}}{2}$ et $\theta = \frac{3\pi}{4} + 2k\pi$ et donc :

$$(\overrightarrow{e_1}; \overrightarrow{OI}) = (\overrightarrow{e_1}; \overrightarrow{OB})/2 = arg(z_1)/2 = \frac{3\pi}{8} + 2k\pi$$

4. Calculer l'affixe $z_{\rm I}$ de I, puis le module de $z_{\rm I}$.

$$z_{\rm I} = \frac{z_{\rm A} + z_{\rm B}}{2} = \frac{2 - \sqrt{2} + \sqrt{2}i}{2}$$

$$|z_{\rm I}| = \frac{\sqrt{(2-\sqrt{2})^2 + \sqrt{2}^2}}{4} = \frac{\sqrt{6-2\sqrt{2}}}{4}$$

5. Déduire des résultats précédents les valeurs exactes de $\cos \frac{3\pi}{8}$ et $\sin \frac{3\pi}{8}$

 $\frac{3\pi}{8}$ étant un argument de $z_{\rm I}$ il suit que :

$$\cos \frac{3\pi}{8} = \frac{\frac{2-\sqrt{2}}{4}}{\frac{\sqrt{6-2\sqrt{2}}}{4}}$$
 et $\sin \frac{3\pi}{8} = \frac{\sqrt{2}}{\sqrt{6-2\sqrt{2}}}$