INTERROGATION N°18

SUJET A

On prendra soin de coller le sujet sur la copie. La note tiendra compte de la qualité de la rédaction et des justifications.

Exercice 1. On considère une fonction f définie sur un intervalle I = [a; b] où a et b sont deux réels quelconques par

$$f(x) = k$$

où *k* est une constante réelle.

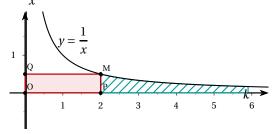
- 1. Quelle doit-être la valeur de k pour que f soit une densité de probabilité sur l'intervalle [2;4]?
- 2. Quelle doit-être la valeur de k pour que f soit une densité de probabilité sur l'intervalle [a;b]?

Exercice 2. On considère la fonction f définie sur \mathbb{R}^+ par $f(x) = 2e^{-2x}$.

- 1. Déterminer une primitive de f sur \mathbb{R}^+ .
- 2. Calculer $\int_0^t f(x)dx$ puis en déduire $\lim_{t \to +\infty} \int_0^t f(x)dx$.
- 3. Qu'a-t-on démontré?

Exercice 3.

Comme l'illustre la figure ci-dessous, on considère dans un repère orthornormé, la représentation graphique de la fonction f définie pour x > 0 par $f(x) = \frac{1}{x}$, les points M(2;0.5), O(0;0), P(2;0) et Q(0;0.5) et un réel k > 2.



Quelle doit-être la valeur du réel k pour que l'aire de la partie hachurée soit dix fois supérieure à l'aire du rectangle OPMQ?

Prénom:

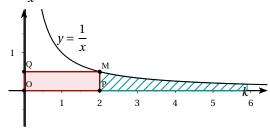
Classe :...

Interrogation n°18

SUJET B

On prendra soin de coller le sujet sur la copie. La note tiendra compte de la qualité de la rédaction et des justifications. Exercice 1

Comme l'illustre la figure ci-dessous, on considère dans un repère orthornormé, la représentation graphique de la fonction f définie pour x > 0 par $f(x) = \frac{1}{x}$, les points M(2;0.5), O(0;0), P(2;0) et Q(0;0.5) et un réel k > 2.



Quelle doit-être la valeur du réel k pour que l'aire de la partie hachurée soit égale à l'aire du rectangle OPMQ?

Exercice 2. On considère une fonction f définie sur un intervalle I = [0; 1] par

$$f(x) = x + \alpha$$

où α est une constante réelle.

- 1. Calculer $\int_{\mathbf{I}} f(x) dx$.
- 2. Déterminer α pour que f soit une densité sur I.

Exercice 3. On considère la fonction f définie sur \mathbb{R}^+ par $f(x) = 5e^{-5x}$.

- 1. Déterminer une primitive de f sur \mathbb{R}^+ .
- 2. Calculer $\int_0^t f(x)dx$ puis en déduire $\lim_{t \to +\infty} \int_0^t f(x)dx$.
- 3. Qu'a-t-on démontré?