$\underline{\mathbf{Exercice}}$ 1. On considère les fonctions $f,\,g$ et h définies par :

$$f(x) = x^2 + 2x - 3$$
 $g(x) = \frac{1}{x - 2}$ $h(x) = \sqrt{5x - 4}$

1. L'expression f(x) ne comporte ni quotient, ni racine carrée, par conséquent :

$$\mathscr{D}_f = \mathbb{R}$$

L'expression g(x) comporte un quotient, le dénominateur ne doit pas s'annuler :

$$x - 2 = 0 \iff x = 2$$

Il y a une valeur interdite, donc

$$\mathcal{D}_q = \mathbb{R} \setminus \{2\}$$

Et enfin l'expression h(x) comporte une racine carrée, on doit donc avoir :

$$5x - 4 \ge 0 \iff 5x \ge 4 \iff x \ge \frac{4}{5}$$

Par conséquent :

$$\mathscr{D}_h = \left\lceil \frac{5}{4}; +infty \right\rceil$$

2.

$$f(0) = 0^{2} + 2 \times 0 - 3 = -3 \qquad f(4) = 4^{2} + 2 \times 4 - 3 = 16 + 8 - 3 = 21$$
$$g(0) = \frac{1}{0 - 2} = -\frac{1}{2} \qquad g(4) = \frac{1}{4 - 2} = \frac{1}{2}$$
$$h(4) = \sqrt{20 - 4} = \sqrt{16} = 4$$

On ne peut pas calculer l'image de 0 par h, car $h \notin \mathcal{D}_h$

3. On cherche les réels x tels que f(x) = -3, c'est-à-dire :

$$x^{2} + 2x - 3 = -3$$

$$\iff x^{2} + 2x = 0$$

$$\iff x(x+2) = 0$$

$$\iff x = 0 \quad \text{ou} \quad x+2 = 0$$

$$\iff x = 0 \quad \text{ou} \quad x = -2$$

-3 a deux antécédents par f, 0 et -2.

4. On cherche les réels x tels que h(x) = 1, c'est-à-dire :

$$\sqrt{5x - 4} = 1$$

$$\iff \sqrt{5x - 4}^2 = 1^2$$

$$\iff 5x - 4 = 1$$

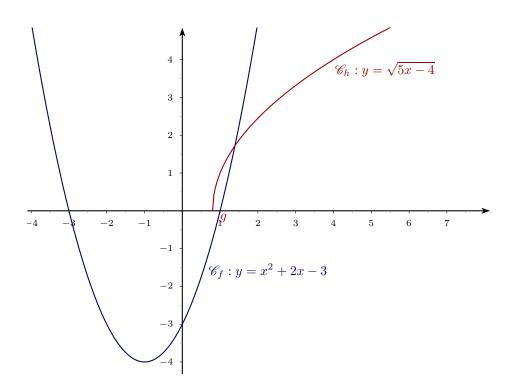
$$\iff 5x = 5 \iff x = 1$$

L'unique antécédent de 1 par h est 1.

5. Compléter les tableaux de valeurs suivants :

x	-4	-3	-2	-1	0	1	2
f(x)	5	0	-3	-4	-3	0	5

x	0.8	1	4	5	6	7	8
h(x)	0	1	4	$\sqrt{21}$	$\sqrt{26}$	$\sqrt{31}$	6



$\underline{\mathbf{Exercice}}$ 1. On considère les fonctions $f,\,g$ et h définies par :

$$f(x) = x^3$$
 $g(x) = \frac{1}{x+2}$ $h(x) = \sqrt{2-x}$

1. L'expression f(x) ne comporte ni quotient, ni racine carrée, par conséquent :

$$\mathscr{D}_f = \mathbb{R}$$

L'expression g(x) comporte un quotient, le dénominateur ne doit pas s'annuler :

$$x + 2 = 0 \iff x = -2$$

Il y a une valeur interdite, donc

$$\mathscr{D}_g = \mathbb{R} \setminus \{-2\}$$

Et enfin l'expression h(x) comporte une racine carrée, on doit donc avoir :

$$2-x \ge 0 \Longleftrightarrow -x \ge -2 \Longleftrightarrow x \le 2$$

Par conséquent :

$$\mathcal{D}_h =]-\infty; 2[$$

2.

$$f(0) = 0^3 = 0 f(4) = 4^3 = 64$$

$$g(0) = \frac{1}{0+2} = \frac{1}{2} g(4) = \frac{1}{4+2} = \frac{1}{6}$$

$$h(0) = \sqrt{2-0} = \sqrt{2} \approx 1,41$$

4 n'a pas d'image par h car $4 \notin \mathcal{D}_h$.

3. On cherche les réels x tels que g(x) = 3, c'est-à-dire :

$$\frac{1}{x+2} = 3$$

$$\iff 1 = 3(x+2)$$

$$\iff 1 = 3x + 6$$

$$\iff 3x + 5 = 0$$

$$\iff x = -\frac{5}{3}$$

3 a donc une unique antécédent par g qui est $-\frac{5}{3}$.

4. On cherche les réels x tels que h(x) = 0, c'est-à-dire :

$$\sqrt{2-x} = 0$$

$$\iff \sqrt{2-x^2} = 0^2$$

$$\iff 2-x = 0$$

$$\iff -x = -2$$

$$\iff x = 2$$

0 a donc une unique antécédent par h qui est 2.

5. Compléter les tableaux de valeurs suivants :

x	-3	-2	-1	0	1	2	3
f(x)	-27	-8	-1	0	1	8	27

x	-14	-7	-6	-4	-2	0	2
h(x)	4	3	$\simeq 2,82$	$\sqrt{6}$	2	$\simeq 1,41$	0

