» RÃĽVISION BAC BLANC 3 » INTÉGRATION

Exercice 1. (6 points)

On considère la fonction f définie sur \mathbb{R} par :

$$f(x) = (x+2)e^{\frac{1}{2}x}$$
.

- 1. (a) Vérifier que $f(x) = 2\left(e^{\frac{1}{2}x} + \frac{1}{2}xe^{\frac{1}{2}x}\right)$ pour tout réel x.
 - (b) Déterminer les limites de f en $+\infty$ et en $-\infty$. Interpréter graphiquement.
 - (c) Démontrer que pour tout réel x, $f'(x) = \frac{1}{2}(x+4)e^{\frac{1}{2}x}$.
 - (d) Etablir le tableau de variation de f puis le tableau de signe de f sur \mathbb{R} .
- 2. On pose $I = \int_0^1 f(x) dx$
 - (a) Interpréter géométriquement le réel I. On donne l'algorithme ci-dessous.

Variables: k et n sont des nombres entiers naturels.

s est un nombre réel.

Entrée : Demander à l'utilisateur la valeur de n.

Initialisation : Affecter à *s* la valeur 0.

Traitement: Pour k allant de 0 à n-1

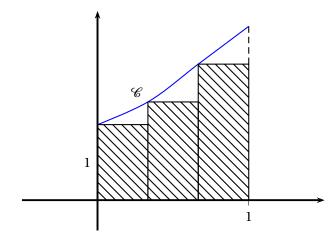
| Affecter à s la valeur $s + \frac{1}{n} f\left(\frac{k}{n}\right)$.

Fin de boucle.

Sortie: Afficher s.

On note s_n le nombre affiché par cet algorithme lorsque l'utilisateur entre un entier naturel strictement positif comme valeur de n.

(b) Justifier que *s*₃ représente l'aire, exprimée en unités d'aire, du domaine hachuré sur le graphique ci-dessous où les trois rectangles ont la même largeur.



- (c) Que dire de la valeur de s_n fournie par l'algorithme proposé lorsque n devient grand?
- 3. (a) Soient u et v les fonctions définies sur \mathbb{R} par u(x) = x et $v(x) = e^{\frac{1}{2}x}$. Vérifier que f = 2(u'v + uv').
 - (b) En déduire une primitive de f sur $\mathbb R$ puis calculer la valeur exacte de I, enfin donner $\lim_{n\to+\infty} s_n$.

<u>Exercice</u> **2.** Pour chaque question, une seule des trois propositions est exacte. Le candidat indiquera sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Une justification est demandée. *Une réponse exacte rapport 0.75 point; une réponse inexacte enlève 0.25 point; l'absence de réponse est comptée 0 point. Si le total est négatif, la note est ramenée à zéro.*

Le plan complexe est muni d'un repère orthonormé direct d'origine O.

1. Une solution de l'équation $2z + \overline{z} = 9 + i$ est :

(a) 3

(b) *i*

(c) 3+i

2. Soit z un nombre complexe; |z+i| est égal à :

(a) |z| + 1

(b) |z-i|

(c) $|i\overline{z}+1|$

3. Soit n un entier naturel. Le complexe $\left(\sqrt{3}+i\right)^n$ est un imaginaire pur si et seulement si :

(a) n = 3

(b) n = 6k + 3, avec $k \in \mathbb{Z}$

(c) n = 6k avec $k \in \mathbb{Z}$.

4. Soient A et B deux points d'affixes respectives i et -1. L'ensemble des points M d'affixe z vérifiant |z-i|=|z+i| est :

(a) La droite (AB)

(b) Le cercle de diamètre [AB]

(c) la droite perpendiculaire à (AB) passant par O.

5. Soient A et B les points d'affixes respectives 4 et 3*i*. L'affixe du point C tel que le triangle ABC soit isocèle avec $(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{2}$ est :

(a) 1-4i

(b) -3i

(c) 7 + 4i

6. L'ensemble des solutions dans \mathbb{C} de l'équation $\frac{z-2}{z-1} = z$ est :

(a) $\{1 - i\}$

(b) L'ensemble vide

(c) $\{1-i; 1+i\}$