FICHE RÉSUMÉ

Pour tout nombre réel strictement positif λ , le logarithme népérien de λ est l'unique solution de l'équation $e^x = \lambda$. Ce qui donne :

1.
$$e^{\ln \lambda} = \lambda \text{ avec } \lambda > 0$$

3.
$$\ln 1 = 0$$
.

2.
$$\ln e^x = x \text{ avec } x \in \mathbb{R}$$
.

4.
$$\ln e = 1$$
.

Théorème 1. (Propriété Algébrique)

Pour tout réel strictement positif x et y et pour tout entier relatif n on a :

1.
$$ln(xy) = ln x + ln y$$

$$3. \ln(x^n) = n \ln x$$

$$2. \ln \frac{x}{y} = \ln x - \ln y$$

4.
$$\ln \sqrt{x} = \frac{1}{2} \ln x$$

(Signe, variation et dérivée de ln) Théorème 2.

La fonction $x \mapsto \ln x$ est strictement croissante sur $]0; +\infty[$. $\ln x > 0 \iff x > 1$ et $\ln x < 0 \iff 0 < x < 1$. De plus

$$(\ln x)' = \frac{1}{x}$$
 et $(\ln u)' = \frac{u'}{u}$

$$(\ln u)' = \frac{u'}{u}$$

Théorème 3. (Limites faisant intervenir le logarithme népérien)

$$1. \lim_{x \to +\infty} \ln x = +\infty$$

5.
$$\lim_{x \to 0^+} x \ln x = 0$$

$$2. \lim_{x \to 0} \ln x = -\infty$$

6.
$$\lim_{x\to 0^+} x^n \ln x = 0$$
, avec $n \in \mathbb{N}^*$

$$3. \lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

7.
$$\lim_{x \to 1} \frac{\ln x}{x - 1} = 1$$

4.
$$\lim_{x \to +\infty} \frac{\ln x}{x^n} = 0$$
, avec $n \in \mathbb{N}^*$

Les courbes
$$\mathcal{C}_{exp}$$
 et \mathcal{C}_{ln} sont symétriques par rapport à la droite Δ d'équation $y = x$.



