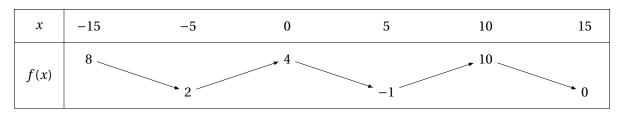
∽ CORRECTION DU DEVOIR SURVEILLÉ 5 ∾ FONCTIONS ET VARIATIONS.

La note tiendra compte de la qualité de la rédaction et de l'application.

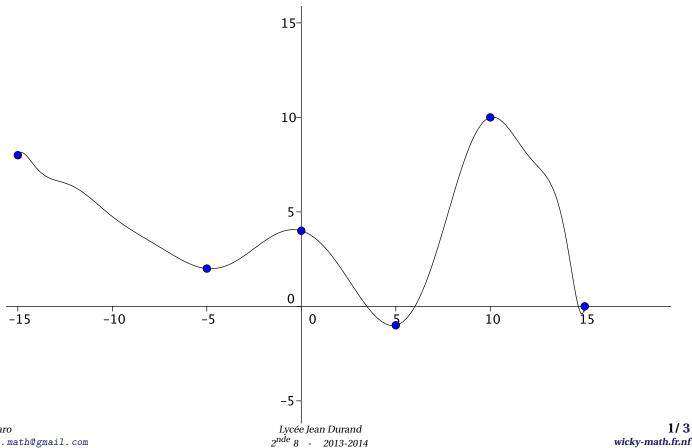
Exercice 1. On considère une fonction f définie sur l'intervalle [-15;15] dont voici le tableau de variation :



- 1. Pour chacune des propositions dire si elle est vraie ou fausse, argumentez.
 - (a) *Proposition 1*: f(1) < f(2).

Puisque 1 < 2 et comme la fonction f est strictement décroissante sur [0;5] elle inverse l'ordre donc :

- (b) Proposition 2: Le minimum de la fonction f sur l'intervalle [-15;0] est -1. La fonction f étant strictement décroissante sur [-15,5] puis strictement croissante sur [-5;0] elle admet alors un minimum qui est 2 sur l'intervalle [-15;0].
- (c) *Proposition 3*: f(x) > 0 sur l'intervalle [-15;0]. Etant donné que le minimum de f est 2, il est clair que f(x) > 0 sur l'intervalle [-15;0].
- (d) *Proposition 4*: Le maximum de la fonction *f* sur l'intervalle [5; 15] est 10.
- (e) *Proposition 5*: On ne peut pas comparer f(11) et f(-11). f(11) est compris entre 0 et 10, tandis que f(-11) est compris entre 2 et 8, ces deux informations ne permettent pas de comparer f(11) et f(-11).
- (f) *Proposition 6*: La fonction *f* est négative sur l'intervalle [0;10]. f(0) = 4 donc f n'est pas (toujours) négative sur l'intervalle [0;10].
- 2. Réaliser une courbe pouvant admettre un tel tableau de variation.



Votre courbe est-elle la seule que l'on puisse tracer? On peut tracer d'autres courbes (par exemple en reliant chaque point bleu par un segment de droite).

Exercice 2. On considère les fonctions f_1 , f_2 , f_3 , f_4 et f_5 définies sur \mathbb{R} par :

$$f_1(x) = \frac{1}{3}x - 1$$
 ; $f_2(x) = -2x + 1$; $f_3(x) = \sqrt{x^2 + 1}$; $f_4(x) = 0$ et $f_5(x) = (x - 1)^2 + 2$

1. Parmi les fonctions f_1 , f_2 , f_3 , f_4 et f_5 lesquelles sont affines? Argumenter.

 f_1 est affine puisque $f_1(x)$ est écrite sous la forme ax + b avec $a = \frac{1}{3}$ et b = -1.

 f_2 est affine puisque $f_2(x)$ est écrite sous la forme ax + b avec a = -2 et b = 1. De même pour f_3 avec a = 0 et b = 0. Enfin les fonctions f_3 et f_5 ne sont pas des fonctions affines car on ne peut les écrire sous la forme ax + b.

2. Dresser les tableaux de variations de f_1 et f_2 . Justifier.

Puisque $\frac{1}{3} > 0$ la fonction f_1 est strictement croissante sur \mathbb{R} .

х	$-\infty$	+∞
$f_1(x)$		1

De même puisque -2 < 0 la fonction f_2 est strictement décroissante sur \mathbb{R} :

х	$-\infty$	+∞
$f_2(x)$	/	\

3. Déterminer le minimum de la fonction f_5 . Préciser en quelle valeur il est atteint.

Pour tout réel x on a :

$$(x-1)^2 \ge 0 \Longleftrightarrow (x-1)^2 + 2 \ge 2 \Longleftrightarrow f_5(x) \ge 2$$

De plus pour x = 1 pour $f_5(1) = (1-1)^2 + 2 = 0^2 + 2 = 2$, donc f_5 admet un minimum de 2 atteint pour x = 1.

Exercice 3. Lors des soldes, un magasin affiche la promotion suivante :

- « Pour tout achat dont le montant est strictement inférieur à 100€ profitez de 20% de réduction. Si le montant est supérieur à 100€, bénéficiez de 35% de réduction. »
 - 1. Calculer le prix après réduction d'un article valant initialement 70€.

Le prix après réduction d'un article valant initialement 70€:

$$70 \times (1 - 0.2) = 70 \times 0.8 = 56 \in$$

2. Calculer le prix après réduction d'un article valant initialement 200€.

Le prix après réduction d'un article valant initialement 200€:

$$200 \times (1 - 0.35) = 70 \times 0.65 = 130 \in$$

- 3. Soit *x* le prix d'un article avant réduction.
 - (a) Montrer que si x < 100 le prix en fonction de x que nous noterons f(x) vaut f(x) = 0.8x Si x < 100 le prix après réduction d'un article valant initialement $x \in \text{vaut}$:

$$f(x) = x \times (1 - 0.2) = 0.8x$$

(b) Déterminer f(x) lorsque $x \ge 100$.

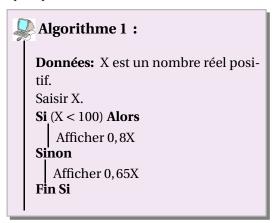
Si $x \ge 100$ alors $f(x) = x \times (1 - 0.35) = 0.65x$.

(c) Peut-on dire que la fonction f est strictement croissante sur \mathbb{R}^+ ? Argumentez.

Sur l'intervalle [0;100[f(x) = 0.8x donc f est affine avec a = 0.8 > 0 donc f est strictement croissante sur [0;100[. De même sur l'intervalle [100; $+\infty$ [.

En revanche $f(90) = 90 \times 0, 8 = 72$ et $f(100) = 0,65 \times 100 = 65$ donc f n'est pas croissante sur \mathbb{R}^+

4. Compléter l'algorithme suivant qui pour un prix X affiche le prix après réduction.



5. Compléter le tableau de valeurs suivant :

Prix avant remise	0	20	40	80	100	120	160
Prix après remise	0	16	32	64	65	78	104

6. On note \mathscr{C}_f la représentation graphique de la fonction f sur $[0;+\infty[$. Représenter graphiquement \mathscr{C}_f en choisissant pour unité 1 cm = 20 \in en abscisse et en ordonnée.

