● DEVOIR SURVEILLÉ 2 ● **ARITHMÉTIQUE**

La note tiendra compte de la qualité de la rédaction et de l'application.

(10 points) Exercice 1.

A chaque lettre de l'alphabet, on associe, grâce au tableau ci-dessous, un nombre entier compris entre 0 et 25.

A	В	С	D	Е	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	P	Q	R	S	Т	U	V	W	X	Y	Z

On définit un procédé de codage de la façon suivante :

Etape 1: A la lettre que l'on veut coder, on associe le nombre m correspondant dans le tableau.

On calcule le reste de la division euclidienne de 3m + 11 par 26 et on le note p.

Au nombre p, on associe la lettre correspondante dans le tableau. Etape 3:

1. Coder la lettre U.

 $3 \times 20 + 11 \equiv 19[26]$ donc U se code T.

2. Trouver un nombre entier x tel que $3x \equiv 1$ [26].

Pour x = 9 on a $27 \equiv 1[26]$.

3. En déduire que pour tout entier m on a $27m - 5 \equiv m - 5[26]$

$$27 \equiv 1[26] \Longrightarrow 27m \equiv m[26] \Longrightarrow 27m - 5 \equiv m - 5[26]$$

4. Démontrer alors l'équivalence :

$$3m + 11 \equiv p$$
 [26] $\iff m \equiv 9p + 5$ [26].

- $-\Longrightarrow$) Si $3m+11\equiv p[26]$ alors $27m+99\equiv 9p[26]$. Or $27m\equiv m[26$ et $99\equiv -5[26]$ par conséquent on a $m-5\equiv 27m$ $9p[26] \Longrightarrow m \equiv 9p + 5[26].$
- \iff Si $m \equiv 9p + 5$ alors $3m \equiv 27p + 15[26]$. Or puisque $27 \equiv 1[26]$ on a $27p \equiv p[26]$ d'où:

$$3m \equiv p + 15[26] \Longrightarrow 3m - 15 \equiv p[26] \Longrightarrow 3m + 11 \equiv p[26]$$

5. Décoder alors la phrase J GLWX L UKXLV.

Pour J : J correspond à 9 et $9 \times 9 + 5 = 8 \equiv 0$ [26] donc on décode J par I.

Pour G: G correspond à 6 et $9 \times 6 + 5 = 59 \equiv 7[26]$ donc on décode G par H.

Pour L: L correspond à 11 et $9 \times 11 + 5 \equiv 0[26]$ donc on décode L par A.

Pour W: W correspond à 22 et $9 \times 22 + 5 \equiv 21[26]$ donc on décode W par V.

Pour X : X correspond à 23 et $9 \times 23 + 5 \equiv 4[26]$ donc on décode X par E.

Ainsi de suite au final la phrase J GLWX L UKXLV se décode par I Have a dream.

Exercice 2. (4 points)

1. Recopier et compléter le tableau suivant :

Valeurs de <i>n</i>	0	1	2	3	4	5	6	7
Congruence de 4 ⁿ mod 11	1	4	5	9	3	1	4	5
Congruence de 3 ⁿ mod 11	1	3	9	5	4	1	3	9

2. Démontrer que $4^{5n} - 3^{5n}$ est divisible par 11 pour tout entier naturel n.

On a $4^5 \equiv 1[11]$ donc $4^{5n} \equiv 1[11]$ et $3^5 \equiv 1[11]$ donc $3^{5n} \equiv 1[11]$ par conséquent :

$$4^{5n} - 3^{5n} \equiv 1 - 1[11] \iff 4^{5n} - 3^{5n} \equiv 0[11] \iff 11|4^{5n} - 3^{5n}|$$

Exercice 3. (Question Cactus)

On souhaite résoudre le problème suivant : *Combien l'armée de Han Xing comporte-t-elle de soldats au minimum si, rangés par 3 colonnes, il reste deux soldats, rangés par 5 colonnes il reste trois soldats, et rangés par 7 colonnes, il reste deux soldats?*Si on note *n* le nombre de soldats de l'armée on a :

$$n-2 \equiv 0[3], \quad n-3 \equiv 0[5] \quad \text{et} \quad n-2 \equiv 0[7]$$

On en déduit que 3|n-2 et 7|n-2 donc il existe un entier naturel k tel que n-2=3k et 7|3k donc d'après le lemme d'euclide 7|3 ou 7|k. Comme 7 ne divise pas 3 il divise k et il existe un entier naturel k' tel que k=7k'. Au final $n-2=3\times7k'=21k'$. Pour k'=0 on obtient n=2 et on a pas $2\equiv3[5]$.

Pour k' = 1 on obtient n = 23 et on a bien $23 \equiv 3[5]$. Le nombre minimal de soldats de l'armée de Han Xing est donc de 23.