∽ CORRECTION DU DEVOIR SURVEILLÉ 1 ∾ LES SUITES

La note tiendra compte de la qualité de la rédaction et de l'application.

Exercice 1. (10 points)

On considère la suite (u_n) définie sur \mathbb{N} par

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{u_n}{2 + u_n^2} \end{cases}$$

1. (a) Étudier sur [0;1] les variations de la fonction f définie par

$$f(x) = \frac{x}{2 + x^2}$$

Pour tout $x \in [0; 1]$, on a:

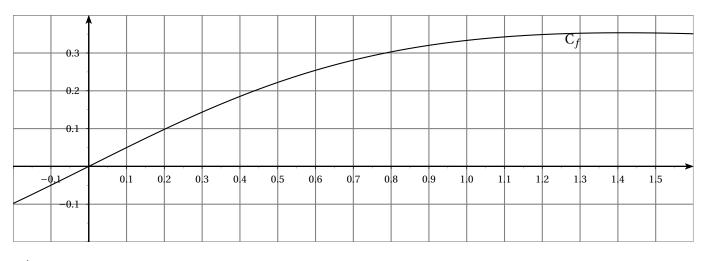
$$f'(x) = \frac{1(2+x^2) - x(2x)}{(2+x^2)^2} = \frac{2+x^2 - 2x^2}{(2+x^2)^2} = \frac{2-x^2}{(2+x^2)^2}$$

Le dénominateur étant strictement positif, f'(x) est du signe du numérateur. De plus puisque $x \in [0; 1], 2-x^2 > 0$, ainsi

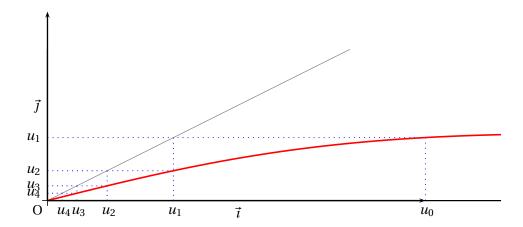
$$f'(x) > 0, \quad \forall x \in [0; 1]$$

Par conséquent la fonction f est strictement croissante sur l'intervalle [0;1].

(b) On donne ci-dessous une partie de la courbe représentative $\mathscr C$ de la fonction f



i. Sur l'axe des abscisses, placer u_0 puis construire u_1 , u_2 et u_3 en laissant apparents les traits de construction.



- ii. Quelles conjectures peut-on émettre sur le sens de variation et sur la convergence de la suite (u_n) ? Au regard du graphique précédent, cette suite semble décroissante (en effet $u_0 > u_1 > u_2 > u_3 > u_4$) et il semble qu'elle converge vers 0.
- (c) Démontrer par récurrence que pour tout entier $n \ge 1$,

$$0 \le u_n \le 1$$

Notons \mathcal{P} la propriété définie au rang n par :

$$\mathscr{P}(n): 0 \le u_n \le 1$$

- Initialisation:
 - $u_0 = 1$, on vérifie bien que $0 \le u_0 \le 1$ ainsi $\mathcal{P}(0)$ est vraie.
- *Hérédité* : Supposons qu'il existe un entier naturel n tel que $0 \le u_n \le 1$ montrons alors que $0 \le u_{n+1} \le 1$.

$$0 \le u_n \le 1$$
 $\iff f(0) \le f(u_n) \le f(1)$ puisque f est strictement croissante sur l'intervalle $[0;1]$ $\iff 0 \le u_{n+1} \le \frac{1}{1+1} = \frac{1}{2}$ $\implies 0 \le u_{n+1} \le 1$

Ainsi dès lors que la propriété \mathcal{P} est vraie au rang n, elle est vraie au rang n+1.

2. (a) Montrer que, pour tout entier $n \ge 1$, on a :

$$u_{n+1} - u_n = \frac{-u_n (1 + u_n^2)}{2 + u_n^2}$$

$$u_{n+1} - u_n = \frac{u_n}{2 + u_n^2} - u_n = \frac{u_n - u_n (2 + u_n^2)}{2 + u_n^2} = \frac{-u_n - u_n^3}{2 + u_n^2} = \frac{-u_n (1 + u_n^2)}{2 + u_n^2}$$

(b) En déduire le sens de variations de la suite (u_n)

Etudions le signe de $u_{n+1}-u_n=\frac{-u_n(1+u_n^2)}{2+u_n^2}$. Tout d'abord le dénominateur $2+u_n^2>0$, ce qui montre que $\frac{-u_n(1+u_n^2)}{2+u_n^2}$ a le même signe que $-u_n(1+u_n^2)$. De même $1+u_n^2>0$ donc $u_{n+1}-u_n$ a le même signe que $-u_n$. Puisqu'on a démontré que $u_n>0$ alors $-u_n<0$, par conséquent, pour tout entier naturel n on a :

$$u_{n+1} - u_n < 0 \iff u_{n+1} < u_n$$

La suite *u* est donc strictement décroissante.

3. (a) Justifier que la suite (u_n) converge.

Puisque pour tout entier naturel n, $u_n > 0$, la suite u est minorée par 0. De plus elle est strictement décroissante, or une suite décroissante et minorée converge, c'est donc le cas pour la suite u.

(b) Résoudre l'équation

$$x = \frac{x}{2 + x^2}$$

$$x = \frac{x}{2+x^2}$$

$$\iff x(2+x^2) = x \quad \text{puisque } 2+x^2 \neq 0$$

$$\iff x(2+x^2) - x = 0$$

$$\iff x(2+x^2-1) = 0$$

$$\iff x = 0 \quad \text{ou} \quad 1+x^2 = 0$$

$$\iff x = 0 \quad \text{ou} \quad x^2 = -1$$

 $x^2 = -1$ n'admet aucune solution réelle, par conséquent l'équation proposée admet une unique solution qui est 0.

(c) En déduire la limite de la suite (u_n)

On sait que la suite u converge vers un réel que nous noterons ℓ , on a donc :

$$\lim_{n \to +\infty} u_n = \ell \Longrightarrow \lim_{n \to +\infty} u_{n+1} = \ell \quad \text{et} \quad \lim_{n \to +\infty} u_n^2 = \ell^2$$

Puisque $u_{n+1} = \frac{u_n}{2 + u_n^2}$, par passage à la limite on obtient :

$$\ell = \frac{\ell}{2 + \ell^2}$$

équation qui d'après la question précédente admet une unique solution : 0, on conclut donc que :

$$\ell = 0 \Longleftrightarrow \lim_{n \to +\infty} u_n = 0$$

(10 points) Exercice 2.

L'objet de cet exercice est l'étude de la suite (u_n) définie par

$$\begin{cases} u_1 = \frac{3}{2} \\ \text{pour tout entier } n \in \mathbb{N}^*, \quad u_{n+1} = \frac{nu_n + 1}{2(n+1)} \end{cases}$$

Partie A - Algorithmique et conjectures

Pour calculer et afficher le terme u_9 de la suite, un élève propose l'algorithme ci-contre. Il a oublié de compléter deux lignes.

Variables	n est un entier naturel					
	u est un réel					
Initialisation	Affecter à <i>n</i> la valeur 1					
	Affecter à u la valeur 1,5					
Traitement	Tant que $n < 9$					
	Affecter à u la valeur $\frac{nu+1}{2(n+1)}$					
	Affecter à n la valeur $n+1$					
	Fin Tant que					
Sortie	Afficher la variable <i>u</i>					

- 1. Recopier et compléter les deux lignes de l'algorithme où figurent des points de suspension. Cf ci-dessus.
- 2. Comment faudrait-il modifier cet algorithme pour qu'il calcule et affiche tous les termes de la suite de u2 jusqu'à u9 ?

Variables	n est un entier naturel u est un réel				
Initialisation	Affecter à n la valeur 1 Affecter à u la valeur 1,5				
Traitement	Tant que $n < 9$ Affecter à u la valeur $\frac{nu+1}{2(n+1)}$ Afficher la variable u Affecter à n la valeur $n+1$ Fin Tant que				
Sortie					

3. Avec cet algorithme modifié, on a obtenu les résultats suivants, arrondis au dix-millième :

n	1	2	3	4	5	6		99	100
u_n	1,5	0,625	0,375	0,2656	0,2063	0,1693	•••	0,0102	0,0101

(a) Vérifier, par le calcul, les valeurs de u_2 et u_3

$$u_2 = \frac{u_1 + 1}{2(1+1)} = \frac{1,5+1}{4} = \frac{2,5}{4} = \frac{5}{8}$$

$$u_3 = \frac{2 \times \frac{5}{8} + 1}{2(2+1)} = \frac{\frac{5}{4} + 1}{6} = \frac{\frac{9}{4}}{6} = \frac{9}{24} = \frac{3}{8}$$

(b) Au vu des résultats du tableau, conjecturer le sens de variation et la convergence de la suite (u_n) . Comme la précédente cette suite semble décroissante et convergente vers 0.

Partie B - Etude mathématique

On définit une suite auxiliaire (v_n) par :

pour tout entier $n \ge 1$, $v_n = nu_n - 1$

1. Montrer que la suite (v_n) est géométrique; préciser sa raison et son premier terme.

Pour tout entier naturel *n* non nul on a :

$$v_{n+1} = (n+1)u_{n+1} - 1 = (n+1)\frac{nu_n + 1}{2(n+1)} - 1 = \frac{nu_n + 1}{2} - 1 = \frac{nu_n + 1 - 2}{2} = \frac{nu_n - 1}{2} = \frac{v_n}{2}$$

La suite v est donc géométrique, sa raison est $\frac{1}{2}$ et son premier terme $v_1 = 1u_1 - 1 = \frac{3}{2} - 1 = \frac{1}{2}$.

2. En déduire que, pour tout entier naturel $n \ge 1$, on a :

$$u_n = \frac{1 + (0,5)^n}{n}$$

Puisque v est une suite géométrique de raison $\frac{1}{2}$ et de premier terme $v_1 = \frac{1}{2}$ on a :

$$\forall n \in \mathbb{N}^*, \quad \nu_n = \nu_1 \times (q)^{n-1} = \frac{1}{2} \times (\frac{1}{2})^{n-1} = (\frac{1}{2})^n$$

Ainsi donc:

$$v_n = \left(\frac{1}{2}\right)^n \iff nu_n - 1 = \left(\frac{1}{2}\right)^n \iff nu_n = \left(\frac{1}{2}\right)^n + 1 \iff u_n = \frac{\left(\frac{1}{2}\right)^n + 1}{n} = \frac{1 + (0,5)^n}{n}$$

3. En déduire la limite de la suite (u_n) .

On sait que $\lim_{n \to +\infty} (0,5)^n = 0$ (suite gémétrique de raison comprise entre -1 et 1, et $\lim_{n \to +\infty} \frac{1}{n} = 0$, par conséquent :

$$\lim_{n\to+\infty}u_n=0$$

4. Dans cette question, toute trace de recherche même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation. Etudier le sens de variation de la suite (u_n) .

$$u_{n+1} - u_n = \frac{1 + (0,5)^{n+1}}{n+1} - \frac{1 + (0,5)^n}{n} = \frac{n + n(0,5)^{n+1} - (n+1)(1+0,5^n)}{n(n+1)}$$

Ce nombre est du signe du numérateur (le dénominateur étant strictement positif) et :

$$n + n(0,5)^{n+1} - n - 1 - n0,5^n - 0,5^n = n(0,5)^{n+1} - n0,5^n - 1 - 0,5^n = n0,5^n(0,5-1) - 1 - 0,5^n = -0,5n0,5^n - 1 - 0,5^n < 0$$

par conséquent :

$$u_{n+1} - u_n < 0 \Longleftrightarrow u_{n+1} < u_n$$

La suite u est donc strictement décroissante

BONUS:

Les pages d'un livre sont numérotées de 1 à n. On additionne les numéros des pages mais une page a été comptée deux fois. On obtient donc un résultat faux égal à 2012.

Quelle page a été comptée deux fois?

Quel est le nombre total de pages du livre?

La somme des pages de ce livre est d'une part strictement supérieure à 2012 moins le numéro de la dernière page et strictement inférieure à 2012 i.e :

$$2012 - n < 1 + 2 + \dots + n < 2012 \Longleftrightarrow 2012 - n < \frac{n(n+1)}{2} < 2012 \Longleftrightarrow 4024 - 2n < n(n+1) < 4024$$

Pour n = 61 on a $4024 - 2 \times 61 = 3902$ et n(n+1) = 3782, pour n = 62 on a 4024 - 2n = 3900 et n(n+1) = 3906. Ainsi 62 convient. Pour n = 63 on a n(n+1) = 4032 > 4024, par conséquent pour tout n > 62 on aura n(n+1) > 4024, de même pour tout n = 63 on aura n(n+1) = 4034 on aura n(n+1) = 4034 or aura n(n+1) = 4034 o

La seule solution possible est que le livre contenait initialement 62 pages, puisque la somme des 62 premiers nombres entiers vaut 3906/2 = 1953, la page que l'on a compté deux fois était la numéro 2012 - 1953 = 59.