► DEVOIR MAISON 10 ► RÉVISIONS : SUITES, ESPACES, FONCTIONS.

Ce devoir maison de révisions, de préparation au DS3 est facultatif. Il est cependant fortement conseillé de faire tous les exercices.

Exercice 1.

^ à ^ ^

On considère la suite (u_n) définie sur \mathbb{N} par :

$$u_0 = -1$$
 et $u_{n+1} = \sqrt{2 + u_n}$

1. Calculer les cinq premiers termes de la suite (u_n) .

$$u_0 = -1$$
 donc $u_1 = \sqrt{2 - 1} = 1$ puis $u_2 = \sqrt{2 + 1} = \sqrt{3}$ puis $u_3 = \sqrt{2 + \sqrt{3}}$ et enfin $u_4 = \sqrt{2 + \sqrt{2 + \sqrt{3}}}$

2. On considère la fonction f définie sur $[-2; +\infty[$ par :

$$f(x) = \sqrt{2+x}$$

(a) Montrer que f est continue sur $[-2; +\infty[$.

 $f = g \circ h$ avec $g(x) = \sqrt{x}$ et h(x) = 2 + x. La fonction h est continue sur \mathbb{R} puisqu'il s'agit d'une fonction affine. Pour $x \in [-2; +\infty[$ on a $h(x) \ge 0$ et la fonction g est continue sur $[0; +\infty[$ (puisqu'il s'agit de la fonction racine carrée). La composée de ces deux fonctions est donc continue sur l'intervalle $[-2; +\infty[$.

(b) Calculer f'(x) pour $x \in]-2; +\infty[$ et dresser le tableau de variation de f.

La fonction racine carrée n'est pas dérivable en 0, c'est pourquoi la fonction f n'est pas dérivable en -2, en revanche en tant que composée de deux fonctions dérivables f est dérivable sur l'intervalle $]-2;+\infty[$ et :

$$\forall x \in \mathbb{R}, \qquad f'(x) = \frac{(2+x)'}{2\sqrt{2+x}} = \frac{1}{2\sqrt{2+x}}$$

Pour tout x > -2 on a 2 + x > 0 donc $2\sqrt{2 + x} > 0$ donc f'(x) > 0 d'où :

	х	-2		+∞
	f'(x)		+	
-	f(x)	0	+∞	

En effet $f(-2) = \sqrt{2-2} = 0$.

De plus de $\lim_{x \to +\infty} 2 + x = +\infty$ et de $\lim_{X \to +\infty} \sqrt{X} = +\infty$ on déduit par composition :

$$\lim_{x \to +\infty} \sqrt{2+x} = +\infty$$

3. Montrer, par récurrence et en utilisant la fonction f que pour tout entier naturel n:

$$-1 \le u_n \le u_{n+1} \le 2$$

En déduire le sens de variation de la suite (u_n) et un majorant de (u_n) .

Notons $\mathcal{P}(n)$ la propriété définie au rang n par :

$$\mathscr{P}(n)$$
: $-1 \le u_n \le u_{n+1} \le 2$

- *Initialisation*: pour n = 0 puisque $u_0 = -1$ et $u_1 = 1$ on vérifie bien que :

$$-1 \le -1 \le 1 \le 2$$

La propriété \mathcal{P} est vraie au rang 0.

- *Hérédité* : Supposons que la propriété \mathscr{P} soit vraie au rang n et montrons qu'elle est vraie au rang n+1. On souhaite montrer que

$$-1 \le u_n \le u_{n+1} \le 2 \Longrightarrow -1 \le u_{n+1} \le u_{n+2} \le 2$$

Or:

$$-1 \le u_n \le u_{n+1} \le 2 \Longrightarrow 1 \le 2 + u_n \le 2 + u_{n+1} \le 4 \Longrightarrow \sqrt{1} \le \sqrt{2 + u_n} \le \sqrt{2 + u_{n+1}} \le \sqrt{4}$$

c'est-à-dire:

$$1 \le u_{n+1} \le u_{n+2} \le 2$$

La propriété \mathcal{P} est héréditaire.

- *Conclusion* : \mathscr{P} est initialisée à partir de n=0 et est héréditaire, par conséquent pour tout entier naturel n on a :

$$-1 \le u_n \le u_{n+1} \le 2$$

On a démontré que pour tout $n \in \mathbb{N}$ $u_n \le u_{n+1}$, ce qui signifie que la suite (u_n) est croissante. On a démontré que pour $n \in \mathbb{N}$ $u_n \le 2$ autrement dit la suite (u_n) est majorée par 2.

- 4. En déduire que la suite (u_n) est convergente vers un réel ℓ . Que peut-on préciser pour ce réel ℓ ? (u_n) est majorée par 2 et est croissante, on en déduit qu'elle converge vers un réel ℓ inférieur ou égal à 2.
- 5. Justifier que $\ell = f(\ell)$ et déterminer ℓ .

On a $u_{n+1} = f(u_n)$ et $\lim_{n \to +\infty} u_n = \ell = \lim_{n \to +\infty} u_{n+1}$. Puisque la fonction f est **continue** sur $[-2; +\infty[$ on a, par passage à la limite :

$$\ell = f(\ell) \iff \ell = \sqrt{2 + \ell} \iff \ell^2 = 2 + \ell \iff \ell^2 - \ell - 2$$

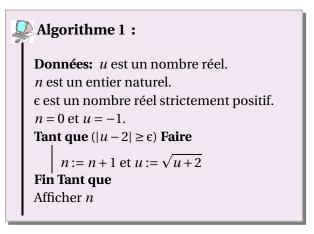
 $\Delta = 1 + 8 = 9$ d'où deux possibilités :

$$\ell_1 = \frac{1-3}{2} = -1$$
 ou $\ell_2 = \frac{1+3}{2} = 2$

Compte tenu du fait que la suite est croissante et que $u_1 = 1$ il est impossible que la limite soit -1 donc :

$$\lim_{n\to+\infty}u_n=2$$

6. On considère l'algorithme suivant :



7. (a) Afin de découvrir l'affichage de cet algorithme pour $\epsilon = 0, 1$, recopier et compléter le tableau des valeurs prises par les variables n, u et par |u-2|:

n	0	1	2	3
и	-1	1	≈ 1,7	≈ 1,93
u-2	3	1	≈ 0,3	≈ 0,07

Qu'affiche cet algorithme?

Cet algorithme affiche donc n = 3 puisque $|u_3 - 2| < 0, 1$.

(b) Pourquoi est-on sûr qu'à partir d'un certain rang la condition $|u-2| \ge \epsilon$ ne sera pas vérifiée ? On a :

$$\lim_{n\to+\infty}u_n=2$$

donc, pour tout $\epsilon > 0$, il existe un rang n_0 à partir duquel on a $|u-2| < \epsilon$.

8. (a) Montrer que pour tout entier naturel n on a :

$$2 - u_{n+1} = \frac{2 - u_n}{\sqrt{2 + u_n} + 2}$$

$$2 - u_{n+1} = 2 - \sqrt{2 + u_n} = \frac{(2 - \sqrt{2 + u_n})(2 + \sqrt{2 + u_n})}{2 + \sqrt{2 + u_n}} = \frac{4 - (2 + u_n)}{2 + \sqrt{2 + u_n}} = \frac{2 - u_n}{\sqrt{2 + u_n} + 2}$$

(b) En justifiant que $1 \le \sqrt{2 + u_n}$ montrer que pour tout entier naturel n on a : $\frac{1}{\sqrt{2 + u_n} + 2} \le \frac{1}{3}$ On sait que f est une fonction strictement croissante sur $[-2; +\infty[$, u est une suite minorée par -1 donc pour tout entier naturel n on a :

$$u_n \ge -1 \iff f(u_n) \ge f(-1) \implies \sqrt{u_n + 2} \ge 1$$

On a alors:

$$\sqrt{2+u_n} \ge 1 \Longleftrightarrow 2+\sqrt{2+u_n} \ge 3$$

Puis par passage à l'inverse on obtient :

$$\frac{1}{2+\sqrt{2+u_n}} \leq \frac{1}{3}$$

(c) En déduire que pour tout entier naturel n on a : $2-u_{n+1} \le \frac{1}{3} \times (2-u_n)$ Pour tout entier naturel n on a d'après la question précédente :

$$\frac{1}{2+\sqrt{2+u_n}} \le \frac{1}{3}$$

De plus on sait que $u_n \le 2 \iff 2 - u_n \ge 0$ d'où :

$$\frac{2-u_n}{2+\sqrt{2+u_n}} \le \frac{2-u_n}{3}$$

c'est-à-dire:

$$2-u_{n+1} \leq \frac{2-u_n}{3}$$

(d) En déduire que : $2-u_6 \le \left(\frac{1}{3}\right)^3 (2-u_3)$

On applique l'inégalité précédente pour n = 5 et on obtient :

$$2 - u_6 \le \frac{2 - u_5}{3}$$

puis on applique cette inégalité pour n = 4 d'où on tire :

$$2-u_6 \le \frac{\frac{2-u_4}{3}}{3} \iff 2-u_6 \le \frac{2-u_4}{9}$$

puis on applique une dernière fois ce résultat pour n=3 et on obtient :

$$2 - u_6 \le \frac{2 - u_3}{27} \iff 2 - u_6 \le \left(\frac{1}{3}\right)^3 (2 - u_3)$$

(e) En déduire que pour $\varepsilon = 0,01$, l'algorithme affichera une valeur de n inférieure ou égale à 6.

On sait d'après 7(a) que $2 - u_3 < 0, 1$ donc d'après la question précédente

$$2 - u_6 \le 0, 1 \times \frac{1}{27} \Longrightarrow 2 - u_6 < 0, 01$$

Par conséquent l'algorithme affichera une valeur de n inférieure ou égale à 6 pour $\epsilon = 0,01$.

Exercice 2.

L'espace est rapporté à un repère orthonormé (O; \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k}). On considère les points A(1; -2; -1) et B(3; -5; -2)

1. Donner une représentation paramétrique de la droite (AB). $\overrightarrow{AB}(2;-3;-1)$ dirige la droite (AB), par conséquent :

$$M(x; y; z) \in (AB) \iff \exists t \in \mathbb{R}, \overrightarrow{AM} = t\overrightarrow{AB} \iff \begin{cases} x - 1 = 2t \\ y + 2 = -3t \text{ avec } t \in \mathbb{R} \end{cases} \iff \begin{cases} x = 2t + 1 \\ y = -3t - 2 \text{ avec } t \in \mathbb{R} \end{cases}$$

2. Soit (d) la droite de représentation paramétrique $\begin{cases} x = 2 - t' \\ y = 1 + 2t' \text{ avec } t' \in \mathbb{R} \\ z = t' \end{cases}$

Démontrer que les droites (AB) et (d) ne sont pas coplanaires.

(*d*) admet $\vec{u}(-1;2;1)$ comme vecteur directeur. Ce vecteur n'est pas colinéaire au vecteur $\overrightarrow{AB}(2;-3;-1)$ puisqu'il n'existe aucun réel t tel que $\overrightarrow{AB} = \vec{u}$ par conséquent la droite (*d*) et la droite (AB) ne sont pas parallèles. Cherchons s'il existe un couple de réel (t,t') vérifiant :

$$\begin{cases} 2t+1=2-t' \\ -3t-2=1+2t' \\ -t-1=t' \end{cases} \iff \begin{cases} 2t+t'=1 \\ 3t+2t'=-3 \\ t'=-t-1 \end{cases} \iff \begin{cases} 2t-t-1=1\Rightarrow t-1=1\Rightarrow t=2 \\ 3t-2t-2=-3\Rightarrow t=-1 \text{ avec } t\in\mathbb{R} \text{ et } t'\in\mathbb{R} \end{cases}$$

Il est impossible d'avoir t = -1 et t = 2, par conséquent le système précédent n'admet pas de solution. Les droites (AB) et (d) n'ont pas de point d'intersection. Elles sont donc non coplanaires.

3. On considère le plan \mathscr{P} passant par le point C(0; -3; 0) et dirigé par les vecteurs $\overrightarrow{u} \begin{pmatrix} 1 \\ -4 \\ 0 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} 0 \\ -5 \\ 1 \end{pmatrix}$

(a) Donner une représentation paramétrique du plan \mathscr{P} .

$$\mathbf{M}(x;y;z) \in \mathcal{P} \Longleftrightarrow \exists t \in \mathbb{R} \quad \text{et} \quad t' \in \mathbb{R}, \overrightarrow{\mathrm{CM}} = t \, \overrightarrow{u} + t' \, \overrightarrow{v} \Longleftrightarrow \left\{ \begin{array}{l} x - 0 = t + 0 \, t' \\ \\ y + 3 = -4 \, t - 5 \, t' \quad \text{avec} \ t \in \mathbb{R} \quad \text{et} \ t' \in \mathbb{R} \\ \\ z - 0 = 0 \, t + t' \end{array} \right.$$

Une représentation paramétrique du pl an ${\mathscr P}$ est alors :

$$\begin{cases} x = t \\ y = -4t - 5t' - 3 \quad \text{avec } t \in \mathbb{R} \quad \text{et } t' \in \mathbb{R} \end{cases}$$

$$z = t'$$

(b) Démontrer que le plan \mathscr{P} contient la droite (AB).

Si $M(x; y; z) \in (AB)$ alors il existe un réel k tel que x = 2k + 1, y = -3k - 2 et z = -k - 1. Vérifions que ce point M est bien un point du plan \mathscr{P} .

On obtient:

$$\begin{cases} 2k+1=t \\ -3k-2=-4t-5t'-3 & \text{avec } t \in \mathbb{R} & \text{et } t' \in \mathbb{R} \end{cases} \iff \begin{cases} t=2k+1 \\ -3k-2=-4t-5t'-3 & \text{avec } t \in \mathbb{R} & \text{et } t' \in \mathbb{R} \end{cases}$$

$$t'=-k-1$$

Vérifions si la seconde égalité est satisfaite pour t = 2k + 1 et t' = -k - 1. On a :

$$-4t-5t'-3=-4(2k+1)-5(-k-1)-3=-8k-4+5k+5-3=-3k-2$$

ce qui est vraie. Ainsi tout point M de (AB) est aussi un point du plan \mathscr{P} . La droite (AB) est contenue dans le plan \mathscr{P} .

- 4. On considère la sphère de diamètre [AB].
 - (a) Donner une équation de cette sphère.

Le centre I de cette sphère a pour coordonnées :

$$I\left(\frac{1+3}{2}; \frac{-2-5}{2}; \frac{-1-2}{2}\right) \iff I\left(2; -\frac{7}{2}; -\frac{3}{2}\right)$$

Le rayon de cette sphère mesure :

$$\frac{AB}{2} = \frac{\sqrt{(3-1)^2 + (-5+2)^2 + (-2+1)^2}}{2} = \frac{\sqrt{4+9+1}}{2} = \frac{\sqrt{14}}{2}$$

Par conséquent, si on note $\mathscr S$ la sphère de centre I et de rayon $\frac{AB}{2}$ on a :

$$M(x; y; z) \in \mathcal{S} \iff IM^2 = \frac{AB^2}{4} \iff (x-2)^2 + (y+3,5)^2 + (z+1,5)^2 = \frac{14}{4} = \frac{7}{2}$$

(b) Déterminer le nombre de points d'intersection entre cette sphère et la droite (d)

Un point $\mathrm{M}(x;y;z)$ appartient à l'intersection entre (d) et $\mathcal S$ si et seulement si il existe $t'\in\mathbb R$ tel que :

$$(2-t'-2)^2 + (1+2t'+3,5)^2 + (t'+1,5)^2 = \frac{7}{2} \iff t'^2 + 4t'^2 + 14t' + \frac{49}{4} + t'^2 + 3t' + \frac{9}{4} = \frac{7}{2}$$

Ce qui donne:

$$6t'^2 + 17t' + 11 = 0$$

 $\Delta = 17^2 - 4 \times 11 \times 6 = 289 - 264 > 0$. On conclut que ce trinôme admet deux solutions. Par conséquent il existe deux points d'intersection entre \mathcal{S} et (d).

Exercice 3.

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = \sin x - \frac{x}{2}$$

On souhaite résoudre l'équation (E) : $\sin x - \frac{x}{2} = 0$, $x \in \mathbb{R}$.

- 1. Où l'on montre que les solutions de (E) sont dans l'intervalle [-2;2].
 - (a) Montrer que si x > 2 alors $-\frac{x}{2} < -1$. En déduire que $f(x) \neq 0$ lorsque x > 2.

Si x > 2 alors -x < -2 donc $-\frac{x}{2} < -1$. De plus pour tout réel x on a sin $x \le 1$. On en conclut que, lorsque x > 2:

$$\sin x - \frac{x}{2} < 0$$

Ainsi il n'est pas possible d'avoir f(x) = 0 pour x > 2.

(b) Montrer que si x < -2 alors $-\frac{x}{2} > 1$ et en déduire de nouveau que $f(x) \neq 0$ pour x < -2.

Si x < -2 alors -x > 2 donc $-\frac{x}{2} > 1$. De plus pour tout réel x on a sin $x \ge -1$. On en conclut que, lorsque x < -2:

$$\sin x - \frac{x}{2} > 0$$

Ainsi il n'est pas possible d'avoir f(x) = 0 pour x < -2.

- (c) En déduire que toutes les solutions de l'équation (E) se trouvent dans l'intervalle [-2;2]. D'après les deux premières questions pour tout réel x non compris dans l'intervalle [-2;2] on a $f(x) \neq 0$, par conséquent toutes les solutions de l'équation (E) se trouvent dans l'intervalle [-2;2].
- 2. Où l'on étudie la fonction f.
 - (a) Résoudre, à l'aide d'un cercle trigonométrique, l'équation $\cos x = \frac{1}{2}$ pour $x \in [-\pi; \pi]$.

$$\cos x = \frac{1}{2} \Longleftrightarrow x = \pm \frac{\pi}{3}$$
 $x \in [-\pi; \pi]$

(b) Déterminer f'(x) pour $x \in [-\pi; \pi]$.

f est dérivable sur $[-\pi;\pi]$ comme somme de deux fonctions dérivables sur $[-\pi;\pi]$ et on a pour tout $x \in [-\pi;\pi]$:

$$f'(x) = \cos x - \frac{1}{2}$$

(c) En déduire le tableau de variations de f pour $x \in [-\pi; \pi]$.

On utilise un cercle trigonométrique pour déduire le signe de f'(x) sur l'intervalle $[-\pi;\pi]$:

х	-π		$-\frac{\pi}{3}$		$+\frac{\pi}{3}$		π
f'(x)		_	0	+	0	_	
f(x)	$+\frac{\pi}{2}$		$-\frac{\sqrt{3}}{2} +$	$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$	$\frac{\pi}{6}$	$-\frac{\pi}{2}$

- 3. Où l'on conclut.
 - (a) Donner, en le justifiant, le nombre de solutions de l'équation (E).

En tant que somme de deux fonctions continues sur [-2;2] (la fonction sin et une fonction affine) la fonction f est continue sur [-2;2]. De plus sur $\left[-\pi;-\frac{\pi}{3}\right]$, $\left[-\frac{\pi}{3};+\frac{\pi}{3}\right]$ et sur $\left[\frac{\pi}{3};\pi\right]$ la fonction f est strictement monotone passant du négatif au positif (ou inversement), d'après un corollaire du TVI l'équation f(x)=0 admet exactement 3 solutions sur l'intervalle [-2;2].

(b) Donner une valeur approchée, à 10^{-3} près par défaut, de la plus grande solution. La plus grande des solutions est comprise entre $\frac{\pi}{3}$ et π . Elle vaut à 10^{-3} près :

 $\alpha \simeq 1,895$