- **1.** Déterminer l'ensemble de définition de f.
- **2.** Etude des variations de f
 - **a.** Dériver f sur son ensemble de définition.

On rappelle la formule à connaître désormais par coeur $(uv)' = \frac{u'v - v'u}{v^2}$

$$(uv)' = \frac{u'v - v'u}{v^2}$$

- **b.** Dresser alors le tableau de variations de f.
- 3. On aimerait rajouter des informations « au bout des flèches » du tableau.
 - a. A l'aide de votre calculatrice, conjecturer graphiquement ces valeurs.
 - **b.** A votre avis, comment les appelle-t-on? les note-t-on? les définit-on?
- 4. Justification en l'infini:
 - **a.** Dresser le tableau de signe de f(x) 2
 - **b.** Ecrire alors |f(x) 2| sans valeur absolue.
 - **c.** On considère un réel ε strictement positif.
 - i. Montrer qu'il existe un réel x_0 tel que pour tout $x \ge x_0$ on ait $|f(x) 2| < \varepsilon$.
 - ii. De même, montrer qu'il existe un réel x_0 tel que pour tout $x \le x_0$ on ait $|f(x) 2| < \varepsilon$.

Travail de l'élève 2: On note f la fonction définie par $f(x) = \frac{x^2 + 1}{2 + x}$.

- **1.** Déterminer l'ensemble de définition de f.
- **2.** Etude des variations de f
 - **a.** Dériver *f* sur son ensemble de définition.
 - **b.** Dresser alors le tableau de variations de f.
- 3. On aimerait rajouter des informations « au bout des flèches » du tableau.
 - a. A l'aide de votre calculatrice, conjecturer graphiquement ces valeurs.
 - **b.** A votre avis, comment les appelle-t-on? les note-t-on? les définit-on?
- 4. Justification en l'infini:
 - **a.** On considère un réel A strictement positif.
 - i. Montrer qu'il existe un réel x_0 tel que pour tout $x \ge x_0$ on ait f(x) > A.
 - ii. De même, montrer qu'il existe un réel x_0 tel que pour tout $x \le x_0$ on ait f(x) < A.

Définition 1.

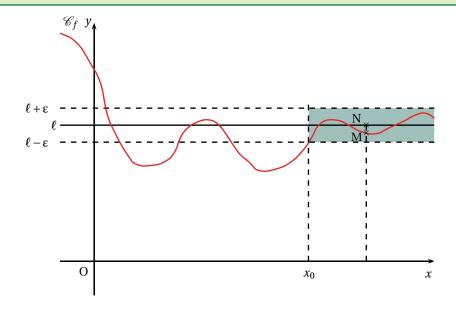
Soit f une fonction définie sur un intervalle du type] a; $+\infty$ [et un réel ℓ .

On dit que f admet pour limite ℓ (ou tend vers ℓ) quand x tend vers $+\infty$, lorsque tout intervalle ouvert I contenant ℓ (aussi petit soit-il) contient aussi toutes les valeurs f(x) pour x assez grand et on note :

$$\lim_{x \to +\infty} f(x) = \ell$$

On dit que la droite d'équation $y = \ell$ est de f en $+\infty$.

à la courbe représentative



Remarque:

Définition 2.

Une fonction f **tend vers**:

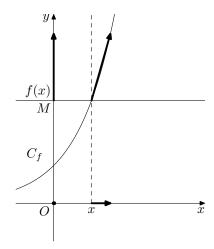
- +∞ **quand** x **tend vers** +∞, lorsque tout intervalle du type]A; +∞[, avec A ∈ \mathbb{R} , contient toutes les images f(x) pour x assez grand et on note :

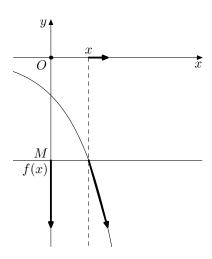
$$\lim_{x \to +\infty} f(x) = +\infty$$

 $-\infty$ **quand** x **tend vers** $+\infty$, lorsque tout intervalle du type] $-\infty$; A[, avec A ∈ \mathbb{R} , contient toutes les images f(x) pour x assez grand et on note :

$$\lim_{x\to +\infty} f(x) = -\infty$$

Illustrations:





Remarque:

Une fonction f **tend vers**:

– un réel ℓ quand x tend vers un réel a, lorsque pour tout intervalle ouvert contenant ℓ , contient aussi toutes les valeurs de f(x) pour tout réel x assez proche de a. On note :

$$\lim_{x \to a} f(x) = \ell$$

- +∞ **quand** x **tend vers un réel** a, lorsque pour tout intervalle du type] λ ; +∞[, avec $\lambda \in \mathbb{R}$, contient toutes les valeurs de f(x) pour tout réel x assez proche de a. On note :

$$\lim_{x \to a} f(x) = +\infty$$

 $-\infty$ **quand** *x* **tend vers un réel** *a*, lorsque pour tout intervalle du type] $-\infty$; λ [, avec $\lambda \in \mathbb{R}$, contient toutes les valeurs de *f*(*x*) pour tout réel *x* assez proche de *a*. On note :

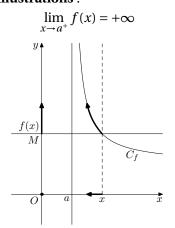
$$\lim_{x \to a} f(x) = +\infty$$

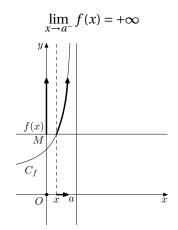
Dans tous les cas, on définit la limite de f en a à droite (respectivement à gauche) de manière analogue, en considérant x assez proche de a mais restant strictement supérieur à a (respectivement inférieur). On note :

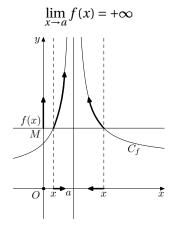
$$\lim_{x \to a} f(x) = \lim_{x \to a^{+}} f(x) \qquad \text{et} \qquad \lim_{x \to a} f(x) = \lim_{x \to a^{-}} f(x)$$

$$x \to a \qquad x > a \qquad x < a$$

Illustrations:







Définition 4.

Lorsque f admet pour limite $+\infty$ ou $-\infty$ en un réel a (ou en a à droite, ou en a à gauche), on dit que la droite d'équation x=a est à la courbe représentative de f.

Remarque: