✓ DEVOIR MAISON 20 ∾ INTÉGRATION

Dans ce devoir maison, les élèves désirant intégrer une classe préparatoire scientifique traiteront l'exercice 2, les autres traiteront l'exercice 1.

Exercice 1. PARTIE A.

Soit f la fonction dérivable, définie sur l'intervalle]0; $+\infty[$ par $f(x) = x \ln(x)$.

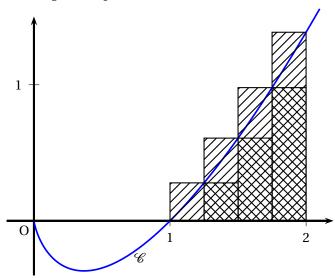
- 1. Déterminer les limites de f en 0 et en $+\infty$.
- 2. On appelle f' la fonction dérivée de f sur]0; $+\infty[$. Montrer que $f'(x) = \ln(x) + 1$.
- 3. Déterminer les variations de f sur]0; $+\infty[$.

PARTIE B.

Soit \mathscr{C} la courbe représentative de la fonction f dans un repère orthonormal.

Soit \mathscr{A} l'aire, exprimée en unités d'aire, de la partie du plan comprise entre l'axe des abscisses, la courbe \mathscr{C} et les droites d'équations respectives x=1 et x=2.

On utilise l'algorithme suivant pour calculer, par la méthode des rectangles, une valeur approchée de l'aire \mathcal{A} . (voir la figure ci-après).



Variables

k et n sont des entiers naturels

U,V sont des nombres réels

Initialisation

U et V prennent la valeur 0, n prend la valeur 4

Traitement

Pour k allant de 0 à n-1

$$U := U + \frac{1}{n} f\left(1 + \frac{k}{n}\right)$$
$$V := V + \frac{1}{n} f\left(1 + \frac{k+1}{n}\right)$$

Fin pour

Affichage

Afficher U et V

Algorithme:

- 1. (a) Que représentent U et V sur le graphique précédent?
 - (b) Quelles sont les valeurs U et V affichées en sortie de l'algorithme (on donnera une valeur approchée de U par défaut à 10⁻⁴ près et une valeur approchée par excès de V à 10⁻⁴ près)?
 - (c) En déduire un encadrement de \mathcal{A} .

2. Soient les suites (U_n) et (V_n) définies pour tout entier n non nul par :

$$U_n = \frac{1}{n} \left[f(1) + f\left(1 + \frac{1}{n}\right) + f\left(1 + \frac{2}{n}\right) + \dots + f\left(1 + \frac{n-1}{n}\right) \right]$$

$$V_n = \frac{1}{n} \left[f\left(1 + \frac{1}{n}\right) + f\left(1 + \frac{2}{n}\right) + \dots + f\left(1 + \frac{n-1}{n}\right) + f(2) \right]$$

On admettra que, pour tout n entier naturel non nul, $U_n \le \mathcal{A} \le V_n$.

- (a) Trouver le plus petit entier n tel que $V_n U_n < 0, 1$.
- (b) Comment modifier l'algorithme précédent pour qu'il permette d'obtenir un encadrement de A d'amplitude inférieure à 0,1?

PARTIE C.

Soit F la fonction dérivable, définie sur]0; $+\infty$ [par F(x) = $\frac{x^2}{2}$ ln $x - \frac{x^2}{4}$.

- 1. Montrer que F est une primitive de f sur]0; $+\infty[$.
- 2. Calculer la valeur exacte de A.

Exercice 2.

PARTIE A.

Intégrale de Wallis et Intégration par parties Intégration par parties.

Théorème 1.

On considère deux fonctions u et v dérivables sur un intervalle [a;b], alors on a :

$$\int_{a}^{b} u(t)v'(t)dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t)v(t)dt$$

- 1. Rappeler la formule permettant de dériver le produit $u(t) \times v(t)$ puis à partir de cette égalité, par passage à l'intégrale démontrer le théorème.
- 2. En utilisant le théorème, calculer $I = \int_{a}^{b} te^{t} dt$ puis $\int_{1}^{x} \ln(t) dt$.

PARTIE B. Intégrales de Wallis

On considère pour $n \in \mathbb{N}$ les intégrales suivantes :

$$I_n = \int_0^{\frac{\pi}{2}} (\cos t)^n dt$$

- 1. Calculer I_0 puis I_1 .
- 2. En posant $u(t) = (\cos t)^{n+1}$ et $v'(t) = \cos t$ et appliquant le théorème 1, montrer que :

$$I_{n+2} = \frac{n+1}{n+2} I_n$$

- 3. En déduire I₃ et I₄.
- 4. Montrer que:

$$I_{2p} = \frac{(2p)!\pi}{2^{2p+1}(p!)^2}$$
 et $I_{2p+1} = \frac{2^{2p}(p!)^2}{(2p+1)!}$