► DEVOIR MAISON 12 ► MATRICE - CALCULATOIRE...

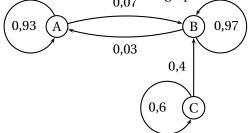
Tout élève traitera au moins un exercice.

Exercice 1.

1. On considère les matrices $M = \begin{pmatrix} 1 & 0 \\ -2 & 2 \end{pmatrix}$ et $N = \begin{pmatrix} -1 & 1 \\ 3 & -1 \end{pmatrix}$.

Calculer $M \times N$ et $N \times M$.

2. On considère les matrices :


$$A = \begin{pmatrix} -3 & 1 & 1 \\ 1 & -3 & 1 \\ 1 & 1 & -3 \end{pmatrix} \qquad \text{et} \qquad J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- (a) Déterminer deux réels a et b tels que $A = aI_3 + bJ$
- (b) Vérifier que $J \times J = 3J$ et en déduire que $A \times A + 5A + 4I_3 = 0_3$
- (c) Déterminer une matrice B telle que $A \times B = I_3$

Exercice 2

On considère un mobile se déplaçant sur les trois sommets d'un graphe avec les probabilités indiquées ci-dessous :

On note $X_n = \begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix}$ le vecteur colonne donnant les probabilités que le mobile occupe les sommets A, B et C n instants

après son départ.

- 1. Donner la matrice de transition T associée à ce graphe.
- 2. S'il part du sommet A:
 - (a) Calculer X_1 et X_2 .
 - (b) Démontrer par récurrence que $X_n = T^n X_0$.
 - (c) Donner à l'aide de la calculatrice X_{30} .
- 3. S'il part du sommet B:
 - (a) Calculer X_1 et X_2 .
 - (b) Démontrer par récurrence que $X_n = T^n X_0$.
 - (c) Donner à l'aide de la calculatrice X₃₀.
- 4. S'il part du sommet C:
 - (a) Calculer X_1 et X_2 .
 - (b) Démontrer par récurrence que $X_n = T^n X_0$.
 - (c) Donner à l'aide de la calculatrice X₃₀.