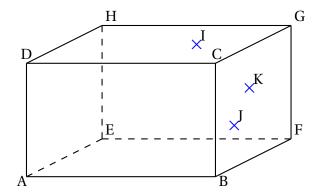
EXERCICES: LES VECTEURS À LA CONQUÊTE DE L'ESPACE

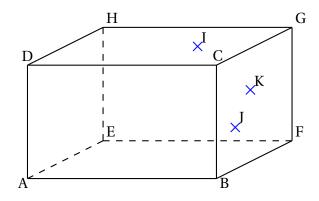
Exercice 1:



On considère le parallélépipède rectangle ABCDEFGH et les points I, J, K tels que J et K sont dans (BFG) et $I \in (CDH)$, comme sur la figure ci-contre.

Dessiner la section du parallélépipède par le plan (IJK).

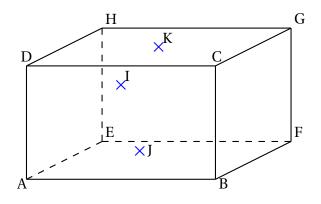
Exercice 2:



On considère le parallélépipède rectangle ABCDEFGH et les points I, J, K tels que J et K sont dans (EFG) et $I \in (CDH)$, comme sur la figure ci-contre.

Dessiner la section du parallélépipède par le plan (IJK).

Exercice 3:



On considère le parallélépipède rectangle ABCDEFGH et les points I, J, K tels que I et J sont dans (ABC) et $K \in (DCG)$, comme sur la figure ci-

Dessiner la section du parallélépipède par le plan (IJK).

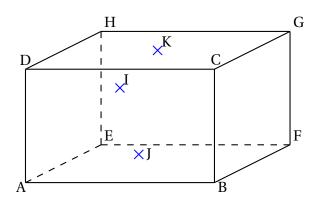
Exercice 4:



On considère le parallélépipède rectangle ABCDEFGH et les points I, J, K tels que I et J sont dans (ABC) et $K \in (EFG)$, comme sur la figure cicontre.

Dessiner la section du parallélépipède par le plan (IJK).

Exercice 5: (Pour les experts)



On considère le parallélépipède rectangle ABCDEFGH et les points I, J, K tels que I et K sont dans (EFG) et $J \in (ABF)$, comme sur la figure ci-contre.

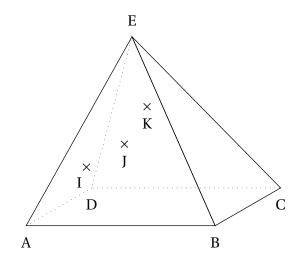
Dessiner la section du parallélépipède par le plan (IJK).

$\sqrt[6]{}$ Exercice 6:

On considère une pyramide de base ABCD et de sommet principal E, et I et J deux points de la face ABE et K un point de la face CDE, comme sur la figure ci-contre.

On se propose de tracer l'intersection de (IJK) et de (ABCDE).

- **1.** Pouvez-vous le faire sans indication supplémentaire?
- 2. a. Caractériser l'intersection (Δ) des plans (ABE) et (CDE). La tracer.
 - **b.** Placer $L = (IJ) \cap (\Delta)$. Donner trois plans auxquels L appartient.
 - **c.** En déduire (IJK) \cap (CDE).
- **3.** Tracer l'intersection de (IJK) et de la pyramide.

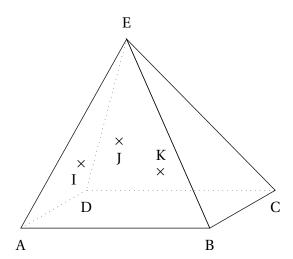


Exercice 7: (Pour les experts)

On considère une pyramide de base ABCD et de sommet principal E, et I et J deux points de la face ABE et K un point de la face CDE, comme sur la figure ci-contre.

On se propose de tracer l'intersection de (IJK) et de (ABCDE).

- 1. **a.** (Δ) est la droite qui passe par E et parallèle à (AB) et (CD), d'après le théorème du toit.
 - **b.** Le point L appartient aux plans (IJK) $car L \in (IJ)$, et aux plans (ABE) et (CDE) $car L \in \Delta$
 - **c.** En déduire (IJK) \cap (CDE). La tracer
- **a.** Placer $M = (IJ) \cap (ABC)$.
 - **b.** En déduire (IJK) \cap (ABC).
- 3. Tracer l'intersection de (IJK) et de la pyramide.



Exercice 8: Soit ABCDEFGH un pavé droit. Soit N et M deux points respectivement situés sur les arêtes [AD] et [AB]. Tracer la section du pavé ABCDEFGH par le plan (MNG) à l'aide du logiciel géogébra.

Exercice 9 : Démontrons par l'absurde le théorème du toit vu en seconde et rappeler cette année. On rappelle que l'on considère deux plans \mathscr{P} et \mathscr{P}' sécants selon une droite Δ . De plus, on sait qu'une droite d de \mathscr{P} est parallèle à une droite d' de \mathscr{P}' . Pour raisonner par l'absurde, on suppose de plus que Δ n'est pas parallèle à d et d'.

On désigne par \vec{u} un vecteur directeur de Δ .

- 1. Expliquer pourquoi ce vecteur \vec{u} est aussi un vecteur directeur de \mathscr{P} et de \mathscr{P}' .
- **2.** Expliquer pourquoi il existe un vecteur \vec{v} non nul directeur de d et d'.
- **3.** Expliquer pourquoi \vec{u} et \vec{v} ne sont pas colinéaires.
- **4.** Expliquer pourquoi ce vecteur \vec{v} est aussi un vecteur directeur de \mathscr{P} et de \mathscr{P}' .
- **5.** En déduire une contradiction et conclure.

Exercice 10 : ABCD est un tétraèdre. Le point I est le milieu de [CD] et le point K est défini par

$$\overrightarrow{AK} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC} + \frac{1}{4}\overrightarrow{AD}$$

- 1. Faire une figure et placer K.
- **2.** Exprimer \overrightarrow{BI} puis \overrightarrow{BK} en fonction des vecteurs \overrightarrow{BC} et \overrightarrow{BD} .
- 3. En déduire que les points B, K et I sont alignés.

- $\sqrt[4]{\text{Exercice 11}}$: ABCDEFGH est un cube. M et L sont les points tels que $\overrightarrow{AM} = \frac{1}{4}\overrightarrow{AD}$ et $\overrightarrow{EL} = \frac{1}{4}\overrightarrow{EF}$.
- 1. Montrer que $\overrightarrow{ML} = \frac{1}{4}\overrightarrow{DB} + \overrightarrow{DH}$
- 2. En déduire la position de la droite (ML) par rapport au plan (DBH)
- **Exercice 12**: ABCDEFGH est un cube. I, J et K sont les milieux respectifs de [AB], [CD] et [EF].
- 1. Démontrer que la droite (CK) est parallèle au plan (IJH)
- 2. Démontrer que les plans (IJH) et (BCK) sont parallèles
- Exercice 13: SABCD est une pyramide à base carré ABCD. Le point O est le centre de ABCD. J est le milieu de [SO]. Le point K est tel que $\overrightarrow{SK} = \frac{1}{3}\overrightarrow{SD}$
 - 1. Justifier que S, B, D, O, J et K sont coplanaires.
 - **2. a.** Démontrer que $\overrightarrow{BK} = -\overrightarrow{SB} + \frac{1}{3}\overrightarrow{SD}$
 - **b.** Justifier que $\overrightarrow{SO} = \frac{1}{2} (\overrightarrow{SB} + \overrightarrow{SD})$ et en déduire que $\overrightarrow{BJ} = -\frac{3}{4} \overrightarrow{SB} + \frac{1}{4} \overrightarrow{SD}$
 - c. Montrer que B, J et K sont alignés.
 - 3. Positions relatives de plans
 - a. Etudier la position relative du plan (BJC) avec le plan (ABC) et avec le plan (SCD).
 - **b.** Etudier la position relative des plans (BJC) et (SAD).
 - c. Construire la section de la pyramide SABCD par le plan (BJC). Ne pas justifier.
- Exercice 14: Dans un repère de l'espace, on considère les points E(2; -3; 5), F(0; -1; 1), H(1; -8; 8)

et la droite d'équation paramétrique $\left\{ \begin{array}{l} x=1+t \\ y=4-t \\ z=-2+2t \end{array} \right. , t \in \mathbb{R}.$

- 1. Montrer que d et (EF) sont strictement parallèles.
- **2.** Montrer que d et (EH) sont sécantes et préciser leur point d'intersection K.