DEVOIR SURVEILLÉ COMMUN: 2H

Exercice 1:

(10 points)

Partie A: $g(x) = e^x - xe^x + 1 \operatorname{sur} \mathbb{R}$

- 1. $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to -\infty} x e^x = 0$ d'après le cours. Donc $\lim_{x \to -\infty} g(x) = 0 + 0 + 1 = 1$.

 - $\lim_{x \to +\infty} e^x = +\infty \quad \text{et} \quad \lim_{x \to +\infty} x e^x = +\infty.$ Donc $\lim_{x \to +\infty} g(x) \text{ est une forme indéterminée.}$ Par produit $\lim_{x \to +\infty} e^x (1-x) = -\infty.$ D'où $\lim_{x \to +\infty} g(x) = -\infty.$

2. Commençons par calculer la dérivée de g.

Pour cela, il faut notamment calculer la dérivée du produit xe^x .

On pose u(x) = x et $v(x) = e^x$. Alors u'(x) = 1 et $v'(x) = e^x$.

Ainsi $g'(x) = e^x - (1 \times e^x + e^x \times x) + 0 = e^x - e^x - xe^x$.

On en déduit le tableau de variations suivant :

X	$-\infty$	0	α	+∞
Signe de	+		<u>:</u>	
-x	ı			
Signe de e^x			i.	
	Т			
Signe de		0	<u> </u>	
g'(x)	T	U		
		→ 2 <u> </u>		
Variations			, , , , , , , , , , , , , , , , , , ,	
de g			0	
	1 -			$-\infty$

a. Sur $]-\infty;0[$, la fonction g est supérieure à 1, donc l'équation g(x)=0 n'admet pas de solution. 3. Sur $[0; +\infty[$, la fonction g est continue et strictement décroissante.

De plus, g(0) = 2 > 0 et $\lim_{x \to +\infty} g(x) = -\infty < 0$.

Donc, d'après le corollaire du TVI, il existe un unique réel $\alpha \in [0; +\infty[$ tel que $g(\alpha) = 0$. Au final, l'équation g(x) = 0 admet bien une unique solution sur \mathbb{R} .

- **b.** Par balayage, on trouve $1.27 < \alpha < 1.28$
- **c.** On sait que $g(\alpha) = 0 \iff e^{\alpha} \alpha e^{\alpha} + 1 = 0 \iff e^{\alpha} (1 \alpha) = -1 \iff e^{\alpha} = \frac{-1}{1 \alpha} \iff e^{\alpha} = \frac{1}{\alpha 1}$

	х	$-\infty$		α		+∞
	Signe de			0	_	
4.	g		т	Ü		

Partie B:
$$A(x) = \frac{4x}{e^x + 1} \operatorname{sur} \mathbb{R}$$

1. • $\lim_{x \to -\infty} 4x = -\infty$ et $\lim_{x \to -\infty} e^x + 1 = 0 + 1 = 1$. Donc par quotient $\lim_{x \to -\infty} A(x) = -\infty$

- $\lim_{x \to +\infty} 4x = +\infty$ et $\lim_{x \to +\infty} e^x + 1 = +\infty$. Donc $\lim_{x \to -\infty} A(x)$ est une forme indéterminée. Or $A(x) = \frac{x \times 4}{e^x(1 + e^{-x})} = \frac{x}{e^x} \times \frac{4}{1 + e^{-x}}$. $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$ d'après le cours, donc $\lim_{x \to +\infty} \frac{x}{e^x} = 0$. De plus $\lim_{x \to +\infty} \frac{4}{1 + e^{-x}} = \frac{4}{1 + 0} = 4$ Finalement par produit $\lim_{x \to +\infty} A(x) = 0$.
- 2. On pose u(x) = 4x et $v(x) = e^x + 1$. Alors u'(x) = 4 et $v'(x) = e^x$. Ainsi $A'(x) = \frac{4 \times (e^x + 1) - e^x \times 4x}{(e^x + 1)^2} = \frac{4(e^x + 1 - xe^x)}{(e^x + 1)^2}$. D'où $A'(x) = \frac{4g(x)}{(e^x + 1)^2}$

	х	$-\infty$		α		+∞
	Signe de			0	_	
	4g(x)		+	Ų		
	Signe de				+	
	$(e^{x}+1)^{2}$	+	+			
	Signe de			Ó	_	
	A'(x)		Т			
				$A(\alpha)$		
	Variations					
	de A					
3.		$-\infty$				* 0

4. Le maximum de la fonction A est donc atteint en α . Or

$$A(\alpha) = \frac{4\alpha}{e^{\alpha} + 1} = \frac{4\alpha}{\frac{1}{\alpha - 1} + 1} = \frac{4\alpha}{\frac{1 + \alpha - 1}{\alpha - 1}} = \frac{4\alpha}{\frac{\alpha}{\alpha - 1}} = 4\alpha \times \frac{\alpha - 1}{\alpha} = 4(\alpha - 1)$$

Partie C: $f(x) = \frac{4}{e^x + 1} \operatorname{sur} \mathbb{R}^+$

- **1.** M(x; f(x)) car $M \in \mathscr{C}$ P(x; 0) car $P \in (Ox)$ et Q(0; f(x)) car $Q \in (Oy)$.
- 2. L'aire du triangle OPMQ est égale à OP × OQ = $xf(x) = x \times \frac{4}{e^x + 1} = A(x)$. On a déjà montré que le maximum de la fonction A était atteint en $x = \alpha$ et valait $4(\alpha - 1)$.
- 3. Le coefficient directeur de la tangente T est $f'(\alpha)$. Or $f'(x) = \frac{-4e^x}{(e^x + 1)^2}$. Donc :

$$f'(\alpha) = \frac{-4e^{\alpha}}{(e^{\alpha} + 1)^2} = \frac{-4 \times \frac{1}{\alpha - 1}}{\left(\frac{1}{\alpha - 1} + 1\right)^2} = \frac{\frac{-4}{\alpha - 1}}{\left(\frac{1 + \alpha - 1}{\alpha - 1}\right)^2} = \frac{-4}{\alpha - 1} \times \left(\frac{\alpha - 1}{\alpha}\right)^2 = \frac{-4(\alpha - 1)}{\alpha^2}$$

De plus $\overrightarrow{PQ}(-\alpha; f(\alpha))$. Donc le coefficient directeur de la droite (PQ) est $\frac{f(\alpha)}{-\alpha}$. Or :

$$\frac{f(\alpha)}{-\alpha} = \frac{4}{e^{\alpha}+1} \times \frac{1}{-\alpha} = \frac{4}{\frac{1}{\alpha-1}+1} \times \frac{1}{-\alpha} = \frac{4}{\frac{1+\alpha-1}{\alpha-1}} \times \frac{1}{-\alpha} = 4 \times \frac{\alpha-1}{\alpha} \times \frac{1}{-\alpha} = \frac{-4(\alpha-1)}{\alpha^2} = f'(\alpha)$$

Donc T//(PQ).