DEVOIR SURVEILLÉ COMMUN: 2H

Exercice 1:

Partie A : Soit g la fonction définie sur \mathbb{R} par

(4.5 points)

(10 points)

$$g(x) = e^x - xe^x + 1$$

- 1. Déterminer les limites de g en $-\infty$ et en $+\infty$.
- **2.** Etablir le tableau de variations complet de la fonction *g*.
- **3. a.** Démontrer que l'équation g(x) = 0 admet sur \mathbb{R} une unique solution. On note α cette solution.
 - **b.** A l'aide de la calculatrice, déterminer un encadrement d'amplitude 10^{-2} de α .
 - **c.** Montrer que $e^{\alpha} = \frac{1}{\alpha 1}$
- **4.** Déterminer le signe de g(x) suivant les valeurs de x.

Partie B: Soit A la fonction définie et dérivable sur ℝ telle que

(3 points)

$$A(x) = \frac{4x}{e^x + 1}$$

- 1. Déterminer les limites de A en $-\infty$ et en $+\infty$.
- **2.** Montrer que A'(x) = $\frac{4g(x)}{(e^x + 1)^2}$ pour tout $x \in \mathbb{R}$.
- **3.** En déduire les variations de la fonction A sur \mathbb{R} .
- **4.** Montrer que le maximum de la fonction A sur \mathbb{R} vaut $4(\alpha 1)$.

Partie C: On considère la fonction f définie sur $[0; +\infty[$ par :

(2.5 points)

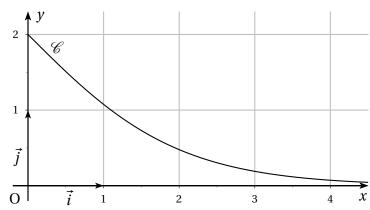
$$f(x) = \frac{4}{e^x + 1}$$

On note \mathscr{C} sa courbe représentative dans un repère orthonormé $\left(0, \overrightarrow{\iota}, \overrightarrow{J}\right)$.

La figure est donnée ci-contre.

Pour tout réel \boldsymbol{x} positif ou nul, on note :

- M le point de \mathscr{C} d'abscisse x;
- P le point de l'axe des abscisses d'abscisse x
- Q le point de l'axe des ordonnées d'ordonnée f(x).



- 1. Déterminer les coordonnées de chacun des points M, P et Q.
- **2.** Démontrer que l'aire du rectangle OPMQ est maximale lorsque M a pour abscisse α et donner sa valeur exacte en fonction de α .
- **3.** Dans cette question, toute trace de recherche sera prise en compte dans l'évaluation. Le point M a pour abscisse α . La tangente T en M à $\mathscr C$ est-elle parallèle à la droite (PQ) ?

Exercice 2:

(10 points)

Les parties A et B sont indépendantes.

Partie A: (2 points)

Résoudre dans $\mathbb C$ les équations suivantes.

Les solutions seront données sous forme algébrique.

$$(E_1): z + 2i = iz - 1$$

et
$$(E_2): 13z^2 + 6z + 1 = 0$$

Partie B: (8 points)

On définit la fonction polynôme f sur $\mathbb C$ à valeurs dans $\mathbb C$ par :

$$f(z) = z^4 - 6z^3 + 14z^2 - 24z + 40$$

1. a. Montrer que si z est un nombre imaginaire pur, noté z = iy (avec $y \in \mathbb{R}$), alors

$$f(iy) = y^4 - 14y^2 + 40 + 6y(y^2 - 4)i$$

- **b.** En déduire que l'équation f(z) = 0 possède exactement deux solutions imaginaires pures, que l'on précisera.
- **2. a.** Trouver deux réels a et b tels que, pour tout $z \in \mathbb{C}$ on ait :

$$f(z) = (z^2 + az + b)(z^2 + 4)$$

- **b.** En déduire l'ensemble des solutions dans $\mathbb C$ de l'équation f(z) = 0.
- **3. a.** Placer dans le plan complexe muni d'un repère orthonormé direct $(O; \vec{u}; \vec{v})$, les images des points A, B, C et D des solutions de l'équation f(z) = 0. On notera la cohérence ...
 - **b. Bonus :** Démontrer que ces points sont le cercle de centre I d'affixe $z_{\rm I}=1$, et de rayon R = $\sqrt{5}$.