DEVOIR MAISON 7: LA FONCTION EXPONENTIELLE

deriver(a*x^2+2a*x)

<u>Exercice 1</u> : Un peu d'algo

Pouvez-vous expliquer les résultats donnés ci-contre par le logiciel de calcul formel Xcasfr?

	ax2xx+2xa
deriver(a*x^2+2a*x,x)	
	a×2×x+2×a
deriver(a*x^2+2a*x,a)	
	x ² + 2 x x
deriver(ax^2+2ax,x)	
	0

On considère la fonction f définie sur \mathbb{R} par $f(x) = e^{-\cos(x)}$, de courbe représentative \mathscr{C}_f dans un repère orthonormé $\left(0, \overrightarrow{i}, \overrightarrow{j}\right)$.

- 1. Démontrer que cette fonction est paire. Que peut-on en déduire sur sa \mathscr{C}_f ?
- 2. Démontrer que cette fonction est périodique, de période 2π .
- **3.** Calculer f'(x) et dresser le tableau de variations de f sur l'intervalle $[0;\pi]$.
- **4.** Déduire des trois questions précédentes le tableau de variations de f sur $[-2\pi; 2\pi]$.
- 5. Déterminer l'équation réduite de la tangente à la courbe \mathscr{C}_f au point d'abscisse $\frac{\pi}{2}$.

Exercice 3 : Un peu de démo

\rceil Prérequis sur la fonction exponentielle :

- La fonction exponentielle est l'unique fonction égale à sa dérivée telle que l'image de 0 soit 1.
- Si u est une fonction dérivable sur un intervalle I, alors la dérivée de la fonction e^u sur I est $u'e^u$

On se propose de démontrer la propriété suivante :

Pour tous réels x et y on a :
$$e^{x+y} = e^x \times e^y$$

ainsi que celles qui en découlent, à savoir :

Pour tous réels
$$x$$
 et y on a : $e^{-x} = \frac{1}{e^x}$ et $e^{x-y} = \frac{e^x}{e^y}$.

Attention donc à ne pas utiliser ces propriétés dans la suite pour les démontrer!!

Soit y un réel quelconque, **fixé**. On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{e^{x+y}}{e^x}$.

- 1. Calculer f'(x).
- **2.** En déduire que f est une fonction constante et que pour tout réel x, $f(x) = e^y$.
- 3. Conclure.
- **4.** En remarquant que -x + x = 0 et x y = x + (-y), démontrer que, $\forall x, y \in \mathbb{R}$, on a

$$e^{-x} = \frac{1}{e^x}$$
 et $e^{x-y} = \frac{e^x}{e^y}$

On considère la suite (u_n) définie pour tout entier n par $u_n = e^{1-n}$.

- 1. Démontrer que (u_n) est une suite géométrique dont on précisera le premier terme et la raison.
- **2.** La suite (u_n) est-elle convergente? Si oui, préciser sa limite.
- 3. On pose $S_n = \sum_{k=0}^n u_k$. Montrer que $S_n = \frac{e^2}{e-1} (1 - e^{-n-1})$.
- **4.** Calculer la limite de la suite (S_n) .
- Exercice 5: Encore un peu de suite et d'expo On se place dans un repère orthonormé $(0, \vec{l}, \vec{j})$. On considère la fonction f définie sur \mathbb{R} par $f(x) = xe^{-x}$, un réel a et la suite (v_n) définie pour tout entier naturel n par : $\begin{cases} v_0 = a \\ v_{n+1} = f(v_n) \end{cases}$
 - **1.** Etudier la fonction f (tableau de variations complet).
 - **2.** On se place dans le cas a = 1.5.
 - **a.** Représenter sur un même graphique (unité 10 cm) la fonction f sur [0; 1.6] et la droite d'équation y = x, puis les trois premiers termes de la suite (v_n) pour a = 1.5.
 - **b.** Conjecturer le sens de variation de la suite (v_n) et sa limite éventuelle.
 - **c.** Montrer par récurrence que la suite (v_n) est strictement positive.
 - **d.** Montrer que la suite (v_n) est décroissante.
 - **e.** La suite (v_n) est-elle convergente? Si oui, calculer sa limite.
 - **3.** Dans cette question, toute trace d'argumentation, même incomplète, ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

Que peut-on dire du sens de variation et de la convergence de la suite (v_n) suivant les valeurs du réel a?