La fonction carré est la fonction définie par $f(x) = \dots$ I)

La fonction carré ne possède ni quotient, ni racine, elle est définie sur

/	1
_	

Propriété 1 : Sens de variation et signe

La fonction carrée inverse l'ordre sur les et sur les sur les

Elle est donc strictement sur et strictement sur

On en déduit alors son signe sur \mathbb{R} .

x	$-\infty$	 +∞
Sens de f		
Signe		
Signe de $f(x)$		

Remarques:

- La fonction carré admet comme minimum ... sur ℝ, atteint en
- La fonction étant positive sur ℝ, sa courbe représentative est toujours au-dessus de l'axe des abscisses.

Exercice 1:

Comparer les nombres suivants sans les calculer : 2.43^2 et 2.151^2 , puis $(-1.002)^2$ et $(-0.999)^2$.

$$2.43...2.151 \Longrightarrow 2.43^2.....2.151^2$$

−1.002 et −0.999 sont tous deux Or

Donc: $-1.002...0.999 \Longrightarrow (-1.002)^2.....(-0.999)^2$

Remarque: Si deux nombres réels sont de signes contraires, aucun résultat général ne permet de comparer immédiatement leurs carrés.

Définition 1 : Propriété

La courbe représentative de la fonction carré est appelée de sommet l'origine du

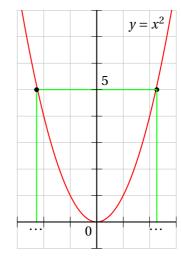
Dans un repère orthogonal, elle est symétrique par rapport

Exercice 2:

Grâce à la courbe de la fonction carré, résoudre les équations suivantes $x^2 < 5$ et $x^2 > 5$.

Dans le premier cas, on lit $\mathcal{S} = \dots$

Dans le second, on lit $\mathcal{S} = \dots$



La fonction inverse est la fonction définie par f(x) = ...II)

La fonction inverse possède un quotient, mais pas racine. Son quotient existe dès que donc elle est définie sur

•

Propriété 2 : Sens de variation et signe

La fonction inverse sur les et sur les

Elle est donc strictement sur et strictement sur

On connait également son signe.

x	$-\infty$	 +∞
Sens de f		
Signe de $f(x)$		
de f(x)		

Remarques:

- La fonction inverse n'admet pas d'extremum sur] ∞; $0[\cup]0; +\infty[$.
- La fonction étant négative sur ℝ⁻, sa courbe représentative est de l'axe des abscisses sur $]-\infty;0[.$
- La fonction étant positive sur ℝ⁺, sa courbe représentative est de l'axe des abscisses sur $]0;+\infty[.$

\mathscr{J} Exercice 3:

Comparer les nombres suivants sans les calculer : $\frac{1}{2.43}$ et $\frac{1}{2.151}$ puis $\frac{1}{-1.002}$ et $\frac{1}{-0.999}$. 2.43 et 2.151 sont tous deux Or

Donc

$$2.43.....2.151 \Longrightarrow \frac{1}{2.43}.....\frac{1}{2.151}$$

-1.002 et -0.999 sont tous deux Or

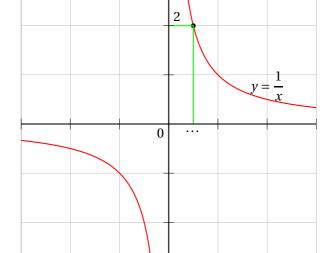
Donc:

$$-1.002...0.999 \Longrightarrow \frac{1}{-1.002}.....\frac{1}{-0.999}$$

Définition 2: Propriété

La courbe repésentative de la fonction inverse est appelée

Dans un repère orthonormal, l'hyperbole est symétrique par rapport à



Exercice 4:

Grâce à la courbe de la fonction inverse, résoudre les équations suivantes $\frac{1}{x} < 2$ et $\frac{1}{x} > 2$.

Dans le premier cas, on lit $\mathscr{S} = \dots$

Dans le second, on lit $\mathcal{S} = \dots$

III) Les fonctions affines sont celles définies par $f(x) = \dots$ avec a et b réels

Une fonction affine ne comporte ni quotient, ni racine. Son ensemble de définition est donc

Propriété 3 : Sens de variation et signe

- Si a = 0, alors f est sur \mathbb{R}

a < 0			
X	$-\infty$	•••	+∞
Sens de f			
Signe de $f(x)$			
de f(x)			

a > 0			
X	$-\infty$	•••	$+\infty$
Sens de f			
Signe			
Signe de $f(x)$			

On en déduit le signe d'une fonction affine dans le cas général :

X	$-\infty$	 +∞
Signe de		
ax + b		

Remarques:

- Les fonctions affines non constantes n'admettent pas d'extremum sur \mathbb{R} .
- Lorsque qu'une fonction est négative sur un intervalle, sa courbe représentative est de l'axe des abscisses cet intvervalle.
- Lorsque qu'une fonction est positive sur \mathbb{R}^+ , sa courbe représentative est de l'axe des abscisses sur cet intervalle.

Propriété 4 : Définition

Lecture graphique du coefficient directeur

