QUELQUES RÈGLES DU JEU LITTÉRAL

<u>Travail de l'élève</u>: Compléter le tableau suivant:

Expression	Somme ou produit?	Nombre de termes ou de facteurs
3x	produit	2 facteurs
$5y^2 - 3y + 1$	somme	3 termes
4(2a+3)		
a(c+2)-3x		
(s+3)(s-3)		
$r^2 - 9$		
4(e+3)(e-2)+5e(e+1)+3(e+4)		
2(t+1) + 3t + 2		

<u>Travail de l'élève</u>: Lucas veut concevoir un programme permettant de développer et réduire tous les produits de la forme (ax + b)(cx + d).

- **1.** Développer et réduite le produit (x+2)(3x+4).
- 2. Lucas a écrit le programme ci-dessous sur Algobox.

2 a EST_DU_TYPE NOMBRE 3 b EST_DU_TYPE NOMBRE c EST_DU_TYPE NOMBRE 4 d EST_DU_TYPE NOMBRE m EST_DU_TYPE NOMBRE 7 n EST_DU_TYPE NOMBRE 8 p EST_DU_TYPE NOMBRE DEBUT_ALGORITHME 9 10 LIRE a 11 LIRE b LIRE c 12 13 LIRE d 14 m PREND_LA_VALEUR a*c 15 n PREND_LA_VALEUR a*d+b*c p PREND_LA_VALEUR b*d 16 17 AFFICHER m

18

19

AFFICHER n

AFFICHER p

20 FIN_ALGORITHME

Il teste avec le produit (x+2)(3x+4). Voici ce qu'affiche son écran :

```
***Algorithme lancé***
3
10
8
***Algorithme terminé***
```

- **a.** Que représentent les lettres *a*, *b*, *c* et *d*?
- **b.** Que représentent les lettres m, n et p?
- **c.** Vérifier les formules utilisées pour le calcul de *m*, *n* et *p*.
- **3.** Programmer cet algorithme sur algobox et tester le pour développer le produit (2x-1)(-5x+3)
- **4.** Adapter le programme précédent afin de développer les expression de la forme $(ax + b)^2$

<u>Travail de l'élève</u>: Factoriser les sommes ci-dessous en faisant apparaître le ou les facteur(s) commun(s):

$$(5+x)\underline{(x+3)} + 2\underline{(x+3)}(x-1) = \underline{(x+3)}[(5+x) + 2(x-1)] = (x+3)(5+x+2x-1) = (x+3)(4+3x)$$

$$5\underline{(z-2)}(z^2+7) - 8z\underline{(z-2)} = \underline{(z-2)}[5(z^2+7) - 8z] = (z-2)(5z^2+35-8z)$$

$$(4x+1)(x-2) + x(2-x) =$$

$$(5u-2)(4u+3) + (4u+3) =$$

$$(5u-2)(4u+3) + (4u+3)^2 =$$

$$8g^3 + 4g =$$

$$5d-5 =$$

Proposition 1 :

Pour tous nombres a, b et c on a : a(b+c) = ab + ac.

Développer une expression contenant des produits, c'est l'écrire en transformant les produits en sommes. *Ici c'est écrire le membre de gauche sous la forme du membre de droite* : produit \rightarrow somme.

Réduire une expression développée c'est l'écrire sous forme de somme contenant le moins de termes possible. Factoriser une expression c'est l'écrire sous forme d'un produit.

Ici c'est écrire le membre de droite sous la forme du membre de gauche : produit ← somme.

Exemples:

$$5(3-2x) = \dots$$
 ; $(3-2x)(4-x) = \dots$; $(1-6x)^2 = \dots$

$$(2x+5) + (2x+5)(x-1) = \dots$$

$$12(5-2z)(z+7)^2 - 3z(5-2z) = \dots$$

🦰 Identités Remarquables

Pour tous nombres a et b on a

- Exemples :

$$(4x-6)^2 = \dots$$
 ; $(3x+1)(3x-1) = \dots$; $25x^2 + 20x + 4 = \dots$

🦰 Point Méthode

Il existe deux méthodes pour :

- Développer une expression : avec les identités remarquables ou la distributivité de la multiplication. Ensuite, on a pour habitude de réduire l'expression et de l'ordonner.
- Factoriser une expression : avec les identités remarquables ou la mise en évidence d'un facteur commun. Pour les identités remarquables, il faut penser à la bonne formule et l'appliquer (donc la connaître!). Dans le second cas, on met en évidence le facteur commun, par exemple en le soulignant à chacune de ses apparitions dans l'expression, puis :
 - On écrit (entre parenthèse éventuellement) le facteur commun,
 - On ouvre des parenthèses,
 - On écrit dans l'ordre **tout** ce qui n'a pas été souligné dans l'expression initiale sachant que :
 - ° Si un signe se retrouve sans nombre (ou lettre) à sa droite, on y met un 1,
 - ° Les exposants du facteur commun s'abaisse du degré correspondant à ce facteur.

Exercice 1:

Développer puis réduire si possible les expressions suivantes

$$A = -2a(5x - 3a + 4) \hspace{0.5cm} ; \hspace{0.5cm} B = 5(x + 2) - 2(3x - 1) \hspace{0.5cm} ; \hspace{0.5cm} C = -(a + b) \hspace{0.5cm} D = -(a - b) \hspace{0.5cm} ; \hspace{0.5cm} E = (3\sqrt{2} - 4)^2$$

Même question pour F = (2x - 3)(5x + 2). Contrôler le résultat obtenu pour x = -3

Exercice 2:

Factoriser les expressions suivantes :

$$G = (2i+1)(3i+2) + (2i+1)(5i+7) \qquad ; \qquad H = (x-1)(4x-7) + x-1 \qquad ; \qquad I = 4x^2 - 4x + 1$$

$$J = (3y - 4)(y - 3) + (3y - 4)^2 \qquad ; \qquad K = 16x^2 - 9 \qquad ; \qquad L = 4(5x - 3) - (3x - 4)(5x - 3)$$

$$M = 9x^2 + 24x + 16 \qquad ; \qquad G = (3z + 6)(-7z - 3) + (3z + 6)(2z + 1) - (3z + 6)(4z + 1)$$

$$M = 9x^2 + 24x + 16$$
 ; $G = (3z+6)(-7z-3) + (3z+6)(2z+1) - (3z+6)(4z+1)$