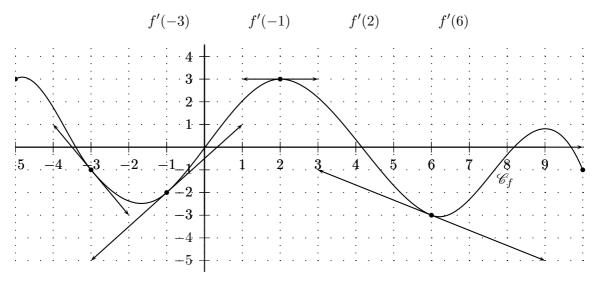
DS 6: Dérivation

Exercice 1. ROC:

Considérons la fonction $f: x \longmapsto \sqrt{x}$ pour $x \in \mathbb{R}^+$.


Montrer que pour tout $x \in \mathbb{R}^{+*}$ on a $f'(x) = \frac{1}{2\sqrt{x}}$

Exercice 2. Lecture Graphique

3 points

La représentation graphique \mathscr{C}_f d'une fonction f est donnée ci-dessous. En chacun des points indiqués, \mathscr{C}_f admet une tangente qui est tracée ci-dessous.

1. Lisez, en vous servant du quadrillage, les nombres dérivés :

2. Le graphique ne permet pas la lecture de f'(4), préciser néanmoins son signe (expliquer par une phrase)

Exercice 3. Quelques dérivées

3 points

Dériver les fonctions suivantes sur I (inutile de simplifier les écritures obtenues):

1.
$$i(x) = (1 - 3x)^5 \text{ sur } I = \mathbb{R}$$

2.
$$j(x) = \sin(x) + 2 + \frac{1}{x} \operatorname{sur} I = \mathbb{R}^*$$

3.
$$k(x) = \sqrt{4x - 1} \text{ sur } I = \left[\frac{1}{4}; +\infty \right]$$

Exercice 4. Etude d'une fonction polynôme de degré 3

6 points

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 2x^2 + x + 3$ et \mathscr{C}_f sa représentation graphique dans un repère orthonormal $(O; \vec{i}, \vec{j})$. (Unités : 2 cm en abscisse, 1 cm en ordonnées).

- 1. Etudier les limites de f en $+\infty$ et en $-\infty$.
- 2. Déterminer la dérivée f' de la fonction f.
- 3. Etudier le signe de f'(x) puis dresser le tableau de variations de la fonction f.
- 4. En déduire les abscisses des points où \mathscr{C}_f admet une tangente horizontale ainsi que les éventuels extrema locaux.
- 5. Déterminer une équation de la tangente T à \mathscr{C}_f au point d'abscisse 2
- 6. Tracer dans le repère les tangentes horizontales trouvées précédemment, T puis \mathscr{C}_f sur [-1;2]

Exercice 5. Etude d'une fonction homographique

6 points

On considère la fonction g définie sur $\mathbb{R} - \left\{\frac{1}{2}\right\}$ par :

$$g(x) = \frac{x-3}{2-4x}$$

- 1. Etudier les limites de f en $+\infty$ et en $-\infty$.
- 2. La courbe \mathscr{C}_g admet-elle une asymptote horizontale \mathscr{D} en $+\infty$ et $-\infty$? Si oui, préciser son équation.
- 3. Etudier les limites de f en $\frac{1}{2}^+$ et en $\frac{1}{2}^-$.
- 4. La courbe \mathcal{C}_g admet-elle une asymptote verticale Δ ? Si oui, préciser son équation.
- 5. Déterminer la dérivée f' de la fonction f.
- 6. Etudier le signe de f' et dresser le tableau de variation de la fonction f.