DM 5: Limites

Théorème de majoration, minoration 1

ightharpoonup Théorème 1: Admis

Soient f, u et v des fonctions définies sur un intervalle du type $[a; +\infty[$.

- Si, pour x assez grand, on a $f(x) \ge u(x)$ et si $\lim_{x \to +\infty} u(x) = +\infty$, alors $\lim_{x \to +\infty} f(x) = +\infty$
- Si, pour x assez grand, on a $f(x) \le v(x)$ et si $\lim_{x \to +\infty} v(x) = -\infty$, alors $\lim_{x \to +\infty} f(x) = -\infty$

Remarque : Il existe des théorèmes analogues pour des limites quand x tend vers $-\infty$ et x tend vers $a \in \mathbb{R}$

Exercice 1. (2 points)

1. Soit
$$f(x) = -x + \cos x$$
. Calculer $\lim_{x \to +\infty} f(x)$.

2. Soit
$$g(x) = \frac{\sqrt{4+x^4}}{x^4}$$
. Calculer $\lim_{x\to 0} g(x)$.

2 Théorème des gendarmes

ightharpoonup Théorème 2:Admis

Soient f, u et v des fonctions définies sur un intervalle du type $[a; +\infty[$. Si pour x assez grand, on a $u(x) \le f(x) \le v(x)$ et si $\lim_{x \to +\infty} u(x) = \lim_{x \to +\infty} v(x) = l$, alors :

$$\lim_{x \to +\infty} f(x) = l$$

Remarque: Il existe des théorèmes analogues pour des limites quand x tend vers $-\infty$ et x tend vers $a \in \mathbb{R}$

Exercice 2. Soit
$$f$$
 la fonction définie sur \mathbb{R}^+ par : $f(x) = -3 + \frac{\sin x}{x}$. Calculer $\lim_{x \to +\infty} f(x)$. (2 points)

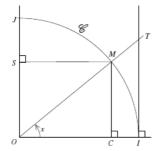
Exercice 3. Une limite à connaître : Le but de cette partie est de déterminer $\lim_{x\to 0} \frac{\sin(x)}{x}$ (16 points) Partie A: Etude du problème

- 1. Expliquer pourquoi cette limite est une forme indéterminée.
- 2. Expliquer pourquoi la méthode utilisée dans l'exercice 2 ne permet pas de répondre à la question.

Partie B: Calculs d'aires

Soit $x \in]0; \frac{\pi}{2}[$ et M le point du cercle trigonométrique \mathscr{C} tel que $(\overrightarrow{OI}; \overrightarrow{OM}) = x$ rad.

Les éléments géométriques utiliser par la suite sont décrits dans la figure ci-dessous :



- 1. Exprimer en fonction de x les distances OC, OS et
- 2. Exprimer en fonction de x les aires des triangles OIM et OIT
- 3. Exprimer en fonction de x l'aire du secteur angulaire IOM (la voir comme une fraction à déterminer de l'aire de \mathscr{C})
- 4. Déduire des questions précédents que

 $\sin x < x < \tan x$

Partie C : Détermination de la limite

- 1. Déduire de la question précédente l'encadrement suivant : Pour tout $x \in]0; \frac{\pi}{2}[$ on a $1 < \frac{x}{\sin x} < \frac{1}{\cos x}$
- 2. En utilisant le théorème des gendarmes, en déduire $\lim_{x\to 0^+} \frac{x}{\sin(x)}$. Puis en déduire $\lim_{x\to 0^+} \frac{\sin(x)}{x}$.
- 3. Etudier la parité de la fonction f définie sur $]-\frac{\pi}{2};\frac{\pi}{2}[\setminus\{0\} \text{ par } f(x)=\frac{\sin(x)}{x}]$
- 4. En déduire $\lim_{x\to 0^-} \frac{x}{\sin(x)}$
- 5. Conclure.