Correction de l'interrogation n°9

Exercice 1. ROC

Démontrer la propriété suivante :

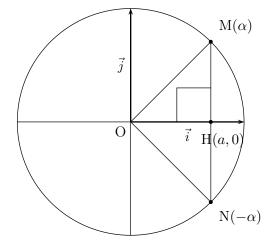
Propriété 1. Soit x et α deux réels alors :

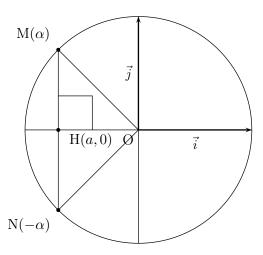
$$\cos x = \cos \alpha \iff x = \pm \alpha + 2k\pi$$
 où $k \in \mathbb{Z}$

<u>Démonstration</u>:

Distinguous plusieurs cas:

- Si | a |> 1, l'équation n'a pas de solution car pour tout $x\in\mathbb{R}$ on a $-1\leq \cos x\leq 1$
- Si |a| < 1, la perpendiculaire à (O, \vec{i}) passant par H(a;0) coupe le cercle trigonométrique en deux points; il existe donc deux points M et N du cercle trigonométrique ayant pour absisse a. L'équation $\cos x = a$ admet donc deux solutions dans $]-\pi;\pi]$, α et donc $-\alpha$ où $\alpha \in [0;\pi]$, les solutions dans \mathbb{R} sécrivent alors $\alpha + 2k\pi$ et $-\alpha + 2k\pi$ où $k \in \mathbb{Z}$.





- Si a=1 les points M et N définis précédemment sont confondus et ont pour absisses 1. L'équation $\cos x=a$ admet donc une unique solution dans $]-\pi;\pi]:x=0$. Dans $\mathbb R$ les solutions s'écrivent $2k\pi$ où $k\in\mathbb Z$
- Si a=-1 les points M et N définis précédemment sont confondus et ont pour absisses -1. L'équation $\cos x=a$ admet donc une unique solution dans $]-\pi;\pi]:x=\pi$. Dans $\mathbb R$ les solutions s'écrivent $\pi+2k\pi$ où $k\in\mathbb Z$

Exercice 2.

1. Résoudre dans les équations suivantes :

(a)
$$\cos \theta = -\frac{\sqrt{3}}{2} \operatorname{avec} \theta \in]-\pi;\pi]$$

$$\cos \theta = -\frac{\sqrt{3}}{2} \Longleftrightarrow \cos \theta = \cos \left(-\frac{5\pi}{6}\right) \Longleftrightarrow \theta = \pm \frac{5\pi}{6}$$

(b)
$$\cos \theta = -\frac{\sqrt{3}}{2}$$
 avec $\theta \in \mathbb{R}$, donc

$$\theta = \pm \frac{5\pi}{6} + 2k\pi \qquad k \in \mathbb{Z}$$

(c)
$$\sin \theta = \frac{1}{2}$$
 avec $\theta \in [0; 2\pi[$

$$\sin \theta = \frac{\sqrt{1}}{2} \iff \sin \theta = \sin \left(\frac{\pi}{6}\right) \iff \theta = \frac{\pi}{6}$$
 ou $\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$

(d)
$$\sin \theta = \frac{1}{2}$$
 avec $\theta \in \mathbb{R}$, donc

$$\theta = \frac{\pi}{6} + 2k\pi$$
 ou $\theta = \frac{5\pi}{6} + 2k\pi$ $k \in \mathbb{Z}$

2. En utilisant le fait que $\sin x$ et $\cos x$ appartiennent à l'intervalle [-1;1] pour tout $x \in \mathbb{R}$, on a : $-1 \le \sin 2\theta \le 1$ et $-3 \le -3\cos \theta \le 3$

$$-5 < \sin 2\theta - 3\cos \theta - 1 < 3$$

3. Résoudre $2\sin^3 x - 4\sin^2 x + \sin x + 7 = 0$. On commence par poser $X = \sin x$ On remarque que -1 est racine évidente du polynôme précédent, en effet : -2 - 4 - 1 + 7 = 0Par conséquent on obtient

$$2X^3 - 4X^2 + X + 7 = 0 \Longleftrightarrow (X+1)(2X^2 + bX + 7) = 0 \Longleftrightarrow 2X^3 + (2+b)X^2 + (b+7)X + 7 = 0$$

Par identification, on obtient : $2+b=-4 \Longleftrightarrow b=-6$ et $b+7=1 \Longleftrightarrow b=-6$

On résout l'équation suivante : $(X+1)(2X^2-6X+7)=0$ $\Delta=b^2-4ac=36-56<0$, par conséquent l'équation admet une unique solution qui est -1

Finalement
$$\sin x = -1 \iff x = -\frac{\pi}{2} + 2k\pi$$
 $k \in \mathbb{Z}$

Correction de l'interrogation n°9

Exercice 1. ROC

Démontrer la propriété suivante :

Propriété 2. Synthèse

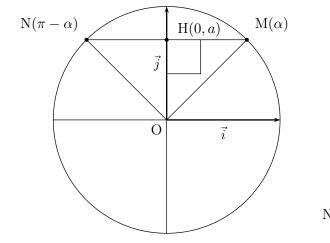
Soit x et α deux réels alors :

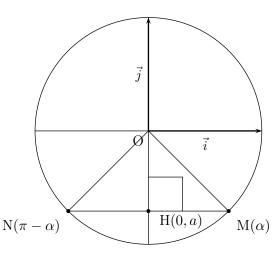
$$\sin x = \sin \alpha \iff x = \alpha + 2k\pi$$
 ou $x = \pi - \alpha + 2k\pi$ avec $k \in \mathbb{Z}$

<u>Démonstration</u>:

Distinguous plusieurs cas:

- Si | a |> 1, l'équation n'a pas de solution car pour tout $x \in \mathbb{R}$ on a $-1 \le \sin x \le 1$
- Si |a| < 1, la perpendiculaire à (O, \vec{j}) passant par H(0; a) coupe le cercle trigonométrique en deux points; il existe donc deux points M et N du cercle trigonométrique ayant pour ordonnée a. L'équation $\sin x = a$ admet donc deux solutions dans $]-\pi;\pi]$, α et $\pi \alpha$ où $\alpha \in]-\pi;\pi]^1$, les solutions dans \mathbb{R} sécrivent alors $\alpha + 2k\pi$ et $\pi \alpha + 2k\pi$ où $k \in \mathbb{Z}$.





- Si a=1 les points M et N définis précédemment sont confondus et ont pour ordonnées 1. L'équation $\sin x = a$ admet donc une unique solution dans $]-\pi;\pi]: x = \frac{\pi}{2}$. Dans $\mathbb R$ les solutions s'écrivent $\frac{\pi}{2} + 2k\pi$ où $k \in \mathbb Z$ - Si a=-1 les points M et N définis précédemment sont confondus et ont pour ordonnée -1.
- Si a=-1 les points M et N définis précédemment sont confondus et ont pour ordonnée -1. L'équation $\sin x=a$ admet donc une unique solution dans $]-\pi;\pi]:x=-\frac{\pi}{2}$. Dans $\mathbb R$ les solutions s'écrivent $-\frac{\pi}{2}+2k\pi$ où $k\in\mathbb Z$

Exercice 2.

1. Résoudre dans les équations suivantes :

(a)
$$\cos \theta = \frac{\sqrt{2}}{2} \text{ avec } \theta \in]-\pi;\pi]$$

$$\cos \theta = -\frac{\sqrt{3}}{2} \Longleftrightarrow \cos \theta = \cos \left(\frac{\pi}{4}\right) \Longleftrightarrow \theta = \pm \frac{\pi}{4}$$

(b)
$$\cos \theta = \frac{\sqrt{2}}{2}$$
 avec $\theta \in \mathbb{R}$, donc

$$\theta = \pm \frac{\pi}{4} + 2k\pi \qquad k \in \mathbb{Z}$$

(c)
$$\sin \theta = -\frac{1}{2}$$
 avec $\theta \in [0; 2\pi[$

$$\sin \theta = -\frac{\sqrt{1}}{2} \iff \sin \theta = \sin \left(-\frac{\pi}{6}\right) \iff \theta = -\frac{\pi}{6} + 2\pi = \frac{11\pi}{6}$$
 ou $\theta = \pi + \frac{\pi}{6} = \frac{7\pi}{6}$

(d)
$$\sin \theta = -\frac{1}{2}$$
 avec $\theta \in \mathbb{R}$, donc

$$\theta = -\frac{\pi}{6} + 2k\pi$$
 ou $\theta = \frac{7\pi}{6} + 2k\pi$ $k \in \mathbb{Z}$

2. En utilisant le fait que $\sin x$ et $\cos x$ appartiennent à l'intervalle [-1;1] pour tout $x \in \mathbb{R}$, on a : $-1 \le \sin 2\theta \le 1$ et $-3 \le 3\cos \theta \le 3$

$$-5 \le \sin 2\theta + 3\cos \theta - 1 \le 3$$

3. Résoudre $2\sin^3 x - \sin^2 x + \sin x - 2 = 0$ On commence par poser $X = \sin x$ On remarque que 1 est racine évidente du polynôme précédent, en effet : -2 - 1 + 1 - 2 = 0Par conséquent on obtient

$$2X^3 - 4X^2 + X + 7 = 0 \iff (X - 1)(2X^2 + bX + 2) = 0 \iff 2X^3 + (-2 + b)X^2 + (-b + 2)X - 2 = 0$$

Par identification, on obtient : $-2+b=-1 \Longleftrightarrow b=1$ et $-b+2=1 \Longleftrightarrow b=1$

On résout l'équation suivante : $(X+1)(2X^2+X+2)=0$ $\Delta=b^2-4ac=1-16<0$, par conséquent l'équation admet une unique solution qui est 1

Finalement
$$\sin x = 1 \Longleftrightarrow x = \frac{\pi}{2} + 2k\pi$$
 $k \in \mathbb{Z}$