Chap 9 : Interprétation Géométrique des Nombres Complexes

Rappels:

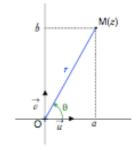
Le plan étant rapporté à un repère orthonormal direct $(O; \vec{u}; \vec{v})$, soit M un point de coordonnées (a ;b).

Si $M \neq O$, on dit que $(r;\theta)$ est un couple de coordonnées

polaires de M lorsque : r = OM et $\theta = (\vec{u}; \overrightarrow{OM})$ $[2\pi]$.

On a alors:

$$r = \sqrt{a^2 + b^2}$$
 et $a = r \cos \theta$ et $b = r \sin \theta$.



Dans le plan complexe, on dit que le point M a pour affixe z = a + ib (écriture algébrique) ou $z = r(\cos\theta + i\sin\theta)$ (écriture trigonométrique),

On appelle $\theta \in \mathbb{R}$ un argument de z et $r \in \mathbb{R}^{+*}$ son module.

Exercice 1 : Donner les formes trigonométriques de :

$$z_1 = 1 + i$$

$$z_2 = \sqrt{3} + i$$

$$z_2 = \sqrt{3} + i$$
 $z_3 = 1 - i\sqrt{3}$ $z_4 = i$

$$z_{4} = i$$

Nous allons voir une $3^{\text{ème}}$ façon, fort commode, de noter les nombres complexes. Activité :

 $f: \mathbb{R} \to \mathbb{C}$ Soit f l'application :

 $\theta \mapsto \cos \theta + i \sin \theta$.

Soient heta et heta' deux réels. En utilisant les formules sur les modules et les arguments de nombres complexes, exprimer $f(\theta + \theta')$ en fonction de $f(\theta)$ et de $f(\theta')$.

Ainsi la fonction f transforme les en en

La fonction f est donc une solution complexe de l'équation fonctionnelle :

Or on sait que les solutions de cette équation fonctionnelle sont aussi les solutions des équations différentielles du type : Précisons cette équation en trouvant la constante.

Que vaut f(0) ?

En prolongeant les règles de dérivation aux fonctions à valeurs complexes, exprimer $f'(\theta)$ en fonction de $f(\theta)$.

La fonction f vérifie donc le problème différentiel : $\begin{cases} y' = \dots \\ y(0) = \dots \end{cases}$

Par analogie avec les fonctions à valeurs réelles, proposer une solution à ce problème différentiel.

Définition (ou notation): Pour tout réel θ , on notele nombre complexe $\cos\theta + i\sin\theta$.

Exercice 2 : Donner le module et un argument de ce nombre ainsi que son conjugué (à connaître).

I. Notation Exponentielle

1) Définition

La fonction $\theta \mapsto \cos \theta + i \sin \theta$ vérifie l'équation fonctionnelle caractéristique des fonctions exponentielles. On adopte la notation suivante :

Définition :

Tout nombre complexe z non nul, de module r strictement positif et d'argument heta admet une écriture du type $z = re^{i\theta}$, appelée forme exponentielle de z.

Exemples:
$$e^{i0} = 1$$
, $e^{i\frac{\pi}{2}} = i$ $e^{i\pi} = -1$ $e^{2i\pi} = 1$ $e^{-i\frac{\pi}{2}} = -i$

Exercice 3 : Donner les formes exponentielles des nombres complexes de l'exercice1, à savoir de:

$$z_1=1+i \qquad \qquad z_2=\sqrt{3}+i \qquad \qquad z_3=1-i\sqrt{3} \qquad \qquad z_4=i$$
 Exercice 4: (n°79 p 304) Dans le plan complexe, placer les points suivants

$$A\left(e^{irac{\pi}{3}}
ight)$$
 ; $B\left(-2e^{irac{\pi}{3}}
ight)$; $C\left(e^{-5irac{\pi}{6}}
ight)$; $D\left(1+e^{-irac{\pi}{3}}
ight)$

Une simple transcription des propriétés vues sur les arguments donne :

Pour tous réels
$$\theta$$
 et θ' on a :
$$e^{i(\theta+\theta')} = e^{i\theta} \times e^{i\theta'} \qquad e^{i(\theta-\theta')} = \frac{e^{i\theta}}{e^{i\theta'}} \qquad \left(e^{i\theta}\right)^n = e^{in\theta} \ \ \text{pour} \ \ n \in \mathbb{Z}$$

Les calculs sont alors rendus très simples.

Exemple: Soient
$$z = 3e^{i\frac{3\pi}{4}}$$
 et $z' = 7e^{-i\frac{2\pi}{3}}$. Alors $zz' = 21e^{i\frac{\pi}{12}}$ et $\frac{z}{z'} = \frac{3}{7}e^{i\frac{17\pi}{12}}$

Exercices:

- 1. Calculer $(1+i)^{14}$
- 2. Soient les nombres complexes : $z_1=e^{i\frac{\pi}{3}}$, $z_2=e^{i\frac{\pi}{4}}$ et $Z=\frac{z_1}{z}$.
 - a. Déterminer la forme exponentielle de Z.
 - b. Déterminer les formes algébriques de $z_{\rm 1}$ et de $z_{\rm 2}$. En déduire celle de Z.
 - c. En déduire les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$
- 3. Ecrire sous la forme exponentielle ou sous la forme trigonométrique les nombres

complexes:
$$3+i\sqrt{3}$$

$$\frac{\sqrt{2}}{1-i}$$

$$\frac{5+11i\sqrt{3}}{7-4i\sqrt{3}}$$

$$-2\left(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\right)$$

4. n° 80-81 p 304

2) Formules de Moivre et d'Euler

Théorème :

Formule de Moivre: pour tout
$$\theta \in \mathbb{R}$$
 et tout $n \in \mathbb{Z}$

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta) \quad \text{et} \quad (\cos \theta - i \sin \theta)^n = \cos(n\theta) - i \sin(n\theta)$$
Formule d'Euler: $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

Preuve:

On a
$$(\cos\theta+i\sin\theta)^n=\left(e^{i\theta}\right)^n=e^{in\theta}=\cos(n\theta)+i\sin(n\theta)$$
 d'où la première formule de Moivre. Pour la seconde, on a :
$$(\cos\theta-i\sin\theta)^n=\left(\cos(-\theta)-i\sin(-\theta)\right)^n=\left(e^{-i\theta}\right)^n=e^{-in\theta}=\cos(-n\theta)+i\sin(-n\theta)=\cos(n\theta)-i\sin(n\theta)$$

$$e^{i\theta}+e^{-i\theta}=\cos\theta+i\sin\theta+\cos\left(-\theta\right)+i\sin\left(-\theta\right)=2\cos\theta$$

$$e^{i\theta}-e^{-i\theta}=\cos\theta+i\sin\theta-\cos\left(-\theta\right)-i\sin\left(-\theta\right)=2i\sin\theta$$
 d'où les formules d'Euler.

Remarque: on retrouve ainsi facilement toutes les formules de trigonométrie connues, comme $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$ et $\sin 2\theta = 2\cos \theta \sin \theta$

Applications:

- 1. Linéariser $\sin^3 \theta$ et $\cos^4 \theta$.
- 2. Calculer $\cos 3\theta$ en fonction de $\cos \theta$, puis $\sin 3\theta$ en fonction de $\sin \theta$

Exercice: n°94 p 305

II. Utilisation en Géométrie

Dans tout le paragraphe, le plan est muni d'un repère $(O; \vec{u}; \vec{v})$.

1) Equation paramétrique du cercle

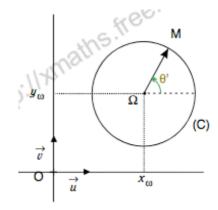
Propriété-Définition :

Dans le plan complexe, on considère le cercle $C(\Omega;r)$ de rayon r et de centre Ω d'affixe ω .

Soit M le point d'affixe z. Alors :

$$M(z) \in C(\Omega; r) \iff z = \omega + re^{i\theta} \text{ avec } \theta \in [0; 2\pi[$$

Cette égalité est appelée **équation paramétrique** du cercle $C(\Omega;r)$.



Preuve:

On sait que $M(z) \in C(\Omega; r) \Leftrightarrow M\Omega = r \Leftrightarrow |z - \omega| = r$.

On appelle $\theta = (\vec{u}; \overline{\Omega M})$ dans $[0; 2\pi[$. Alors :

$$M(z) \in C(\Omega; r) \Leftrightarrow z - \omega = re^{i\theta} \Leftrightarrow z = \omega + re^{i\theta} \text{ avec } \theta \in [0; 2\pi[$$

Exemple: l'ensemble des points M d'affixe $z=4i+2+3e^{i\theta}$ avec $\theta\in [0;2\pi[$ représente le cercle de rayon 3 et de centre le point d'affixe 4i+2.

Remarques:

- En fait, il n'est pas nécessaire que $\theta \in [0; 2\pi[$ particulièrement, il suffit que θ soit dans un intervalle d'amplitude 2π .
- Si on note $\left(x_\Omega;y_\Omega\right)$ les coordonnées de Ω et (x;y) celles de M, on a :

$$M \in C \Leftrightarrow \begin{cases} x = x_{\Omega} + r \cos \theta \\ y = y_{\Omega} + r \sin \theta \end{cases} \text{ avec } \theta \in [0; 2\pi[\ .$$

Exercices: n°85-86 p 305

2) Transformations du plan

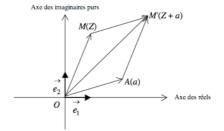
Soit f une fonction définie sur $\mathbb C$ à valeurs dans $\mathbb C$. On lui associe la transformation T qui à tout point M d'affixe z associe le point M d'affixe z' = f(z).

Théorème:

La **translation** de vecteur \vec{w} d'affixe b transforme un point M(z) en un point M'(z') tel que :

$$z' = z + b$$
.

Ajouter un nombre b c'est translater d'un vecteur d'affixe b.



Preuve:

Dire que M' est l'image de M par la translation de vecteur \vec{w} signifie que $\overline{MM'} = \vec{w} \Leftrightarrow z' - z = b$ d'où le théorème.

Théorème:

L'homothétie de centre $\Omega(\omega)$ et de rapport $k \in \mathbb{R}^*$ transforme un point M(z) en un point M'(z') tel que :

$$z' - \omega = k(z - \omega)$$

Preuve:

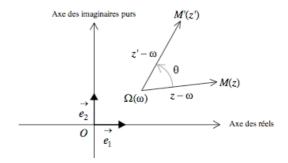
Dire que M' est l'image de M par l'homothétie de centre $\Omega(\omega)$ et de rapport $k \in \mathbb{R}^*$ signifie que $\overrightarrow{\Omega M}' = k \overrightarrow{\Omega M}$, ce qui se traduit bien par $z' - \omega = k(z - \omega)$.

Théorème:

La **rotation** de centre $\Omega(\omega)$ et d'angle θ transforme un point M(z) en un point M'(z') tel que :

$$z'-\omega=e^{i\theta}(z-\omega)$$
.

Multiplier par $e^{i\theta}$ c'est faire tourner d'un angle θ .



Preuve:

Si $M=\Omega$, la relation $z'-\omega=e^{i\theta}(z-\omega)$ est triviale. Supposons maintenant que $M\neq\Omega$. Dire que M' est l'image de M par la rotation de centre $\Omega(\omega)$ et d'angle θ

$$\text{signifie que } \begin{cases} \Omega M' = \Omega M \\ \left(\overrightarrow{\Omega M}; \overrightarrow{\Omega M'} \right) = \theta \quad \left[2\pi \right] \end{cases} \iff \begin{cases} |z' - \omega| = |z - \omega| \\ \arg \left(\frac{z' - \omega}{z - \omega} \right) = \theta \quad \left[2\pi \right] \end{cases}$$

On en déduit :
$$\frac{z'-\omega}{z-\omega} = e^{i\theta}$$
. D'où le théorème.

Exemples: La rotation qui associe à un nombre complexe z le nombre z' tel que :

- $> z' = e^{i\theta}z$ est la rotation de centre O d'angle θ
- > $z'-\omega=i(z-\omega)$ est la rotation de centre $\Omega(\omega)$ et d'angle $\frac{\pi}{2}$
- \Rightarrow z'=iz est la rotation de centre O et d'angle $\frac{\pi}{2}$.

Cas du triangle équilatéral :

ABC est un triangle équilatéral de sens direct ssi $z_C-z_A=e^{i\frac{\pi}{3}}(z_B-z_A)$

Preuve:

Un triangle est équilatéral ssi C est l'image de B par la rotation de centre A et d'angle $\frac{\pi}{2}$

Reconnaître une transformation: Méthode

Lorsqu'on a une transformation f du plan dont l'écriture complexe est du type z' = az + b $(a \neq 0)$, on commence par rechercher son éventuel point fixe.

- Si a=1 et b=0 , alors f est l'identité (tous les points du plan sont fixes)
- Si a = 1 et $b \neq 0$, il n'y a pas de point fixe et f est une translation
- Si $a \neq 1$, il y a un unique point fixe d'affixe ω .
 - Dans ce cas, on cherche à exprimer $z'\!-\!\omega$ en fonction de $z\!-\!\omega$. - Si $a \in \mathbb{R}$, f est une homothétie de rapport a et de centre ω
 - Si a est un complexe de module 1 $(a = e^{i\theta})$, alors f est une rotation d'angle θ .

Exemple: Soit f la transformation du plan qui à tout point M(z) associe le point M'(z') tel que $z' = -\frac{3}{2}z + 2i$. Déterminer la nature de f et préciser ses éléments caractéristiques.

(comme n°104-105-112-114-115 p 309)

Résolution: (méthode type)

ullet Montrons que f admet un unique point invariant.

Pour cela on résout l'équation : $f(\omega) = \omega \Leftrightarrow -\frac{5}{2}\omega + 2i = \omega \Leftrightarrow \omega = \frac{4}{7}i$. La transformation fadmet un unique point invariant Ω d'affixe $\omega = \frac{4}{7}i$.

Pour déterminer la nature de f , on exprime $z'-\omega$ en fonction de $z-\omega$.

On a $\begin{cases} z' = -\frac{5}{2}z + 2i \\ \omega = -\frac{5}{2}\omega + 2i \end{cases}$. En soustrayant membres à membres ces deux égalités, on obtient :

 $z'-\omega=-\frac{5}{2}(z-\omega)$. On en déduit grâce à son écriture complexe que f est l'homothétie de centre Ω et de rapport $k=-\frac{5}{2}$.

Exercice 1: Reconnaître la transformation du plan qui au point M d'affixe z associe le point M' d'affixe z' tel que :

$$z' = z - 3 + 2i$$
 $z' = \frac{\sqrt{2}}{2}(1+i)z$ $z' = -z$ $z' - i = 2(z-i)$ $z' = -iz$ $z' + 1 = iz + i$ (comme n°102-103 p 307)

Exercice 2 : Donner l'écriture complexe de la translation de vecteur $\vec{V}(1;2)$, de l'homothétie de centre A(-1+i) et de rapport 3 et de la rotation de centre B(2-4i) et d'angle $\frac{\pi}{6}$

Exercice 3: Etant donnés A(1+i) et B(2-3i), déterminer les affixes des points M tels que ABM soit un triangle équilatéral.

Exercices: n°113-117-118 p 309

Type Bac: n° 109-110-111-116-119 p 309

Annales:

3) Barycentres

Rappel

Soit $(A_1;\alpha_1),\ (A_2;\alpha_2),\ \dots,\ (A_n;\alpha_n)$ un système de n points pondérés de masse totale non nulle. Alors il existe un unique point G tel que $\sum_{k=1}^n \alpha_k \overrightarrow{GA_k} = \overrightarrow{0}$. Ce point s'appelle le barycentre du système.

Théorème

Soit G le barycentre de n points pondérés $(A_1;\alpha_1), (A_2;\alpha_2), \dots, (A_n;\alpha_n)$ avec $\sum_{k=1}^n \alpha_k \neq 0$. Notons z_k les affixes des points A_k $(1 \leq k \leq n)$. Alors l'affixe z_G de G est donnée par :

$$z_G = \frac{\sum_{k=1}^n \alpha_k z_k}{\sum_{k=1}^n \alpha_k}$$
 (L'affixe du barycentre est la moyenne pondérée des affixes des points)

En particulier, on retrouve l'affixe du milieu d'un segment. L'affixe du centre de gravité de 3 points A(a), B(b) et C(c) est : $\frac{a+b+c}{3}$

Exercice: ABC est un triangle de sens direct. On construit le point P tel que $\left(\overrightarrow{BC};\overrightarrow{AP}\right)=\frac{\pi}{2}$ et AP=BC. On construit de même les points Q et R tels que $\left(\overrightarrow{CA};\overrightarrow{BQ}\right)=\frac{\pi}{2}$, BQ=CA, et $\left(\overrightarrow{AB};\overrightarrow{CR}\right)=\frac{\pi}{2}$, CR=AB. Démontrer que le triangle PQR a le même centre de gravité que ABC.

4) Quelques lieux de points typiques :

Soient A et B deux points distincts du plan.

• Ensemble des points M tels que MA = k:

Si k > 0: Cercle de centre A et de rayon k

Si k = 0: Le point A

Si k < 0: L'ensemble vide

• Ensemble des points M tels que MA = MB :

Médiatrice du segment [AB]

• Ensemble des points M tels que $(\overrightarrow{MA}; \overrightarrow{MB}) = 0 \ [\pi]$:

Droite (AB) privée des points A et B.

• Ensemble des points M tels que $(\overrightarrow{MA}; \overrightarrow{MB}) = 0 \ [2\pi]$:

Droite (AB) privée du segment [AB].

• Ensemble des points M tels que $(\overrightarrow{MA}; \overrightarrow{MB}) = \pi \ [2\pi]$:

Segment [AB].

• Ensemble des points M tels que $(\overrightarrow{MA}; \overrightarrow{MB}) = \frac{\pi}{2} \ [\pi]$:

Cercle de diamètre $\begin{bmatrix} AB \end{bmatrix}$ privé des points A et B.

• Ensemble des points M tels que $(\overrightarrow{MA}; \overrightarrow{MB}) = \frac{\pi}{2}$ $[2\pi]$:

Demi-cercle de diamètre [AB] privé des points A et B et tel que MAB soit direct.

• Ensemble des points M tels que $(\overrightarrow{MA}; \overrightarrow{MB}) = -\frac{\pi}{2}$ [2 π] :

Demi-cercle de diamètre [AB] privé des points A et B et tel que MAB soit indirect.

• Ensemble des points tels que $\overrightarrow{MA}.\overrightarrow{MB} = 0$:

Cercle de diamètre [AB]

Remarque : Un angle orienté n'est défini que si les vecteurs ne sont pas nuls. C'est pourquoi les points A et B doivent étre retirés, le cas échéants, des ensembles ci-dessus.