► EXERCICES SUR LES MATRICES ET SUR L'ARITHMÉTIQUE RÉVISION POUR LE BAC

Chaque jeune parent utilise chaque mois une seule marque de petits pots pour bébé. Trois marques X, Y et Z se partagent le marché. Soit *n* un entier naturel.

On note : X_n l'évènement « la marque X est utilisée le mois n »,

 Y_n l'évènement « la marque Y est utilisée le mois n »,

 \mathbb{Z}_n l'évènement « la marque \mathbb{Z} est utilisée le mois n ».

Les probabilités des évènements X_n, Y_n, Z_n sont notées respectivement $x_n, y_n z_n$.

La campagne publicitaire de chaque marque fait évoluer la répartition.

Un acheteur de la marque X le mois n, a le mois suivant :

50 % de chance de rester fidèle à cette marque,

40 % de chance d'acheter la marque Y,

10 % de chance d'acheter la marque Z.

Un acheteur de la marque Y le mois n, a le mois suivant :

 $30\,\%$ de chance de rester fidèle à cette marque,

50 % de chance d'acheter la marque X,

20% de chance d'acheter la marque Z.

Un acheteur de la marque Z le mois n, a le mois suivant :

70 % de chance de rester fidèle à cette marque,

10% de chance d'acheter la marque X,

20% de chance d'acheter la marque Y.

1. (a) Exprimer x_{n+1} en fonction de x_n , y_n et z_n .

On admet que:

$$y_{n+1} = 0.4x_n + 0.3y_n + 0.2z_n$$
 et que $z_{n+1} = 0.1x_n + 0.2y_n + 0.7z_n$.

- (b) Exprimer z_n en fonction de x_n et y_n . En déduire l'expression de x_{n+1} et y_{n+1} en fonction de x_n et y_n .
- 2. On définit la suite (U_n) par $U_n = \begin{pmatrix} x_n \\ y_n \end{pmatrix}$ pour tout entier naturel n.

On admet que, pour tout entier naturel n, $U_{n+1} = A \times U_n + B$ où $A = \begin{pmatrix} 0, 4 & 0, 4 \\ 0, 2 & 0, 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0, 1 \\ 0, 2 \end{pmatrix}$.

Au début de l'étude statistique (mois de janvier 2014 : n = 0), on estime que $U_0 = \begin{pmatrix} 0.5 \\ 0.3 \end{pmatrix}$.

On considère l'algorithme suivant :

Variables	n et i des entiers naturels.					
	A, B et U des matrices					
Entrée et initialisation	Demander la valeur de <i>n</i>					
	<i>i</i> prend la valeur 0					
	A prend la valeur $\begin{pmatrix} 0,4 & 0,4 \\ 0,2 & 0,1 \end{pmatrix}$					
	B prend la valeur $\begin{pmatrix} 0,1\\0,2 \end{pmatrix}$					
	U prend la valeur $\begin{pmatrix} 0,5\\0,3 \end{pmatrix}$					
Traitement	Tant que $i < n$					
	U prend la valeur $A \times U + B$					
	i prend la valeur $i+1$					
	Fin de Tant que					
Sortie	Afficher U					

- (a) Donner les résultats affichés par cet algorithme pour n = 1 puis pour n = 3.
- (b) Quelle est la probabilité d'utiliser la marque X au mois d'avril? Dans la suite de l'exercice, on cherche à déterminer une expression de U_n en fonction de n.

On note I la matrice
$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 et N la matrice I – A.

- 3. On désigne par C une matrice colonne à deux lignes.
 - (a) Démontrer que $C = A \times C + B$ équivaut à $N \times C = B$.
 - (b) On admet que N est une matrice inversible et que $N^{-1} = \begin{pmatrix} \frac{45}{23} & \frac{20}{23} \\ \frac{10}{23} & \frac{30}{23} \end{pmatrix}$.

En déduire que
$$C = \begin{pmatrix} \frac{17}{46} \\ \frac{7}{23} \end{pmatrix}$$
.

- 4. On note V_n la matrice telle que $V_n = U_n C$ pour tout entier naturel n.
 - (a) Montrer que, pour tout entier naturel n, $V_{n+1} = A \times V_n$.
 - (b) On admet que $U_n = A^n \times (U_0 C) + C$. Quelles sont les probabilités d'utiliser les marques X, Y et Z au mois de mai?

On étudie la population d'une région imaginaire. Le 1^{er} janvier 2013, cette région comptait 250000 habitants dont 70 % résidaient à la campagne et 30 % en ville.

L'examen des données statistiques recueillies au cours de plusieurs années amène à choisir de modéliser l'évolution de la population pour les années à venir de la façon suivante :

• l'effectif de la population est globalement constant,

• chaque année, 5 % de ceux qui résident en ville décident d'aller s'installer à la campagne et 1 % de ceux qui résident à la campagne choisissent d'aller habiter en ville.

Pour tout entier naturel n, on note v_n le nombre d'habitants de cette région qui résident en ville au 1^{er} janvier de l'année (2013+n) et c_n le nombre de ceux qui habitent à la campagne à la même date.

- 1. Pour tout entier naturel n, exprimer v_{n+1} et c_{n+1} en fonction de v_n et c_n .
- 2. Soit la matrice $A = \begin{pmatrix} 0.95 & 0.01 \\ 0.05 & 0.99 \end{pmatrix}$.

On pose $X = \begin{pmatrix} a \\ b \end{pmatrix}$ où a, b sont deux réels fixés et Y = AX.

Déterminer, en fonction de a et b, les réels c et d tels que $Y = \begin{pmatrix} c \\ d \end{pmatrix}$.

Les résultats précédents permettent d'écrire que pour tout entier naturel n,

 $X_{n+1} = AX_n$ où $X_n = \begin{pmatrix} v_n \\ c_n \end{pmatrix}$. On peut donc en déduire que pour tout entier naturel n, $X_n = A^n X_0$.

- 3. Soient les matrices $P = \begin{pmatrix} 1 & -1 \\ 5 & 1 \end{pmatrix}$ et $Q = \begin{pmatrix} 1 & 1 \\ -5 & 1 \end{pmatrix}$.
 - (a) Calculer PQ et QP. En déduire la matrice P^{-1} en fonction de Q.
 - (b) Vérifier que la matrice P⁻¹AP est une matrice diagonale D que l'on précisera.
 - (c) Démontrer que pour tout entier naturel n supérieur ou égal à 1, $A^n = PD^nP^{-1}$.
- 4. Les résultats des questions précédentes permettent d'établir que

$$v_n = \frac{1}{6} (1 + 5 \times 0.94^n) v_0 + \frac{1}{6} (1 - 0.94^n) c_0.$$

Quelles informations peut-on en déduire pour la répartition de la population de cette région à long terme?

Exercice 3:

Antilles Guyanne 2013

PARTIE A.

On considère l'algorithme ci-contre :

- 1. Qu'affiche cet algorithme quand on saisit le nombre 3?
- 2. Qu'affiche cet algorithme quand on saisit le nombre 55?
- 3. Pour un nombre entier saisi quelconque, que représente le résultat fourni par cet algorithme?

A et X sont des nombres entiers

Saisir un entier positif A

Affecter à X la valeur de A

Tant que X supérieur ou égal à 26

Affecter à X la valeur X - 26

Fin du tant que

Afficher X

PARTIE B.

On veut coder un bloc de deux lettres selon la procédure suivante (détaillée en quatre étapes) :

• Étape 1 : chaque lettre du bloc est remplacée par un entier en utilisant le tableau ci-dessous :

												•
A	В	С	D	Е	F	G	Н	I	J	K	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	0	P	Q	R	S	Т	U	V	W	X	Y	Z

On obtient une matrice colonne $\begin{vmatrix} x_1 \\ 0 \end{aligned}$ où x_1 correspond à la première lettre du mot et x_2 correspond à la deuxième lettre du

mot. • Étape 2 : $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ est transformé en $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ tel que $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

La matrice $C = \begin{pmatrix} 3 & 1 \\ 5 & 2 \end{pmatrix}$ est appelée la matrice de codage.

• Étape 3 : $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$ est transformé en $\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ tel que $\begin{cases} z_1 & \equiv & y_1 \, (26) & \text{avec } 0 & \leqslant & z_1 & \leqslant & 25 \\ z_2 & \equiv & y_2 \, (26) & \text{avec } 0 & \leqslant & z_2 & \leqslant & 25 \end{cases}$ • Étape 4 : $\begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ est transformé en un bloc de deux lettres en utilisant le tableau de correspondance donné dans l'étape 1.

 $RE \rightarrow \begin{pmatrix} 17 \\ 4 \end{pmatrix} \rightarrow \begin{pmatrix} 55 \\ 93 \end{pmatrix} \rightarrow \begin{pmatrix} 3 \\ 15 \end{pmatrix} \rightarrow DP$ Le bloc RE est donc codé en DP

1. Justifier le passage de $\begin{pmatrix} 17 \\ 4 \end{pmatrix}$ à $\begin{pmatrix} 55 \\ 93 \end{pmatrix}$ puis à $\begin{pmatrix} 3 \\ 15 \end{pmatrix}$.

2. Soient x_1 , x_2 , x_1' , x_2' quatre nombres entiers compris entre 0 et 25 tels que $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ et $\begin{pmatrix} x_1' \\ x_2' \end{pmatrix}$ sont transformés lors du procédé

de codage en $\begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$.

(a) Montrer que $\begin{cases} 3x_1 + x_2 & \equiv 3x_1' + x_2' & (26) \\ 5x_1 + 2x_2 & \equiv 5x_1' + 2x_2' & (26). \end{cases}$

(b) En déduire que $x_1 \equiv x_1'$ (26) et $x_2 \equiv x_2'$ (26) puis que $x_1 = x_1'$ et $x_2 = x_2'$.

3. On souhaite trouver une méthode de décodage pour le bloc DP :

(a) Vérifier que la matrice $C' = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix}$ est la matrice inverse de C.

(b) Calculer $\begin{pmatrix} y_1 \\ v_2 \end{pmatrix}$ tels que $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix} \begin{pmatrix} 3 \\ 15 \end{pmatrix}$.

(c) Calculer $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ tels que $\begin{cases} x_1 \equiv y_1 & (26) \text{ avec } 0 \leq x_1 \leq 25 \\ x_2 \equiv y_2 & (26) \text{ avec } 0 \leq x_2 \leq 25 \end{cases}$

- (d) Quel procédé général de décodage peut-on conjecturer?
- 4. Dans cette question nous allons généraliser ce procédé de décodage.

On considère un bloc de deux lettres et on appelle z_1 et z_2 les deux entiers compris entre 0 et 25 associés à ces lettres à

l'étape 3. On cherche à trouver deux entiers x_1 et x_2 compris entre 0 et 25 qui donnent la matrice colonne $\begin{vmatrix} z_1 \\ z_2 \end{vmatrix}$ par les

étapes 2 et 3 du procédé de codage.

Soient
$$y_1'$$
 et y_2' tels que $\begin{pmatrix} y_1' \\ y_2 \end{pmatrix} = C' \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$ où $C' = \begin{pmatrix} 2 & -1 \\ -5 & 3 \end{pmatrix}$.

Soient x_1 et x_2 , les nombres entiers tels que $\begin{cases} x_1 &\equiv y_1' & (26) \operatorname{avec} 0 \leq x_1 \leq 25 \\ x_2 &\equiv y_2' & (26) \operatorname{avec} 0 \leq x_2 \leq 25 \end{cases}$

Montrer que
$$\begin{cases} 3x_1 + x_2 & \equiv z_1 & (26) \\ 5x_1 + 2x_2 & \equiv z_2 & (26). \end{cases}$$

5. Décoder OC.

Exercice 4: Polynésie 2013

Un opérateur téléphonique A souhaite prévoir l'évolution de nombre de ses abonnés dans une grande ville par rapport à son principal concurrent B à partir de 2013.

En 2013, les opérateurs A et B ont chacun 300 milliers d'abonnés.

Pour tout entier naturel n, on note a_n le nombre d'abonnés, en milliers, de l'opérateur A la n-ième année après 2013, et b_n le nombre d'abonnés, en milliers, de l'opérateur B la *n*-ième année après 2013.

Ainsi, $a_0 = 300$ et $b_0 = 300$.

Des observations réalisées les années précédentes conduisent à modéliser la situation par la relation suivante :

pour tout entier naturel
$$n$$
,
$$\begin{cases} a_{n+1} = 0,7a_n + 0,2b_n + 60 \\ b_{n+1} = 0,1a_n + 0,6b_n + 70 \end{cases}$$

pour tout entier naturel
$$n$$
,
$$\begin{cases} a_{n+1} = 0, 7a_n + 0, 2b_n + 60 \\ b_{n+1} = 0, 1a_n + 0, 6b_n + 70 \end{cases}$$
On considère les matrices $M = \begin{pmatrix} 0, 7 & 0, 2 \\ 0, 1 & 0, 6 \end{pmatrix}$ et $P = \begin{pmatrix} 60 \\ 70 \end{pmatrix}$.

Pour tout entier naturel n , on note $U_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$.

- (a) Déterminer U₁.
 - (b) Vérifier que, pour tout entier naturel n, $U_{n+1} = M \times U_n + P$.
- 2. On note I la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - (a) Calculer $(I M) \times \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$.
 - (b) En déduire que la matrice I M est inversible et préciser son inverse.
 - (c) Déterminer la matrice U telle que $U = M \times U + P$.
- 3. Pour tout entier naturel, on pose $V_n = U_n U$.
 - (a) Justifier que, pour tout entier naturel n, $V_{n+1} = M \times V_n$.
 - (b) En déduire que, pour tout entier naturel n, $V_n = M^n \times V_0$.

4. On admet que, pour tout entier naturel n,

$$V_n = \begin{pmatrix} \frac{-100}{3} \times 0.8^n - \frac{140}{3} \times 0.5^n \\ \frac{-50}{3} \times 0.8^n + \frac{140}{3} \times 0.5^n \end{pmatrix}$$

- (a) Pour tout entier naturel n, exprimer U_n en fonction de n et en déduire la limite de la suite (a_n) .
- (b) Estimer le nombre d'abonnés de l'opérateur A à long terme.