► EXERCICES 7 TER ►

Exercice 1: On munit l'espace du repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$.

On donne les vecteurs $\vec{u} \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$ $\vec{v} \begin{pmatrix} -2 \\ 2 \\ -2 \end{pmatrix}$ $\vec{w} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$ $\vec{t} \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$

- 1. Les vecteurs \vec{u} et \vec{v} sont-ils orthogonaux?
- **2.** Le produit vectoriel $\vec{u} \wedge \vec{v}$ est :

$$\mathbf{a.} \left(\begin{array}{c} -2 \\ -2 \\ -2 \end{array} \right)$$

b.
$$\begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}$$

$$\mathbf{c}$$
. $\vec{0}$

3. Le produit vectoriel $\vec{u} \wedge \vec{w}$ est :

$$\mathbf{a.} \left(\begin{array}{c} -2 \\ -2 \\ -2 \end{array} \right)$$

b.
$$\begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}$$

$$\mathbf{c}$$
. $\vec{0}$

 $\sqrt[4]{\frac{\text{Exercice 2}}{(0, \vec{i}, \vec{j}, \vec{k})}}: \text{ Soit A}(1.4; 0.7; -0.2) \text{ le point d'application d'une force } \vec{\mathsf{F}}(503; -797; 0) \text{ dans le repère } (0, \vec{i}, \vec{j}, \vec{k}).$

Calculer le moment de la force \vec{F} par rapport au point B(1; 0.5; -0.2)

Aide: relire la dernière partie du cours pour savoir quel produit vectoriel calculer.

 \emptyset Exercice 3: Soit C(4; 7; -2) le point d'application d'une force $\vec{F}(3; -7; 0)$ dans le repère $(0, \vec{i}, \vec{j}, \vec{k})$.

Calculer le moment de la force \vec{F} par rapport au point G(1; 5; -2)

Aide: relire la dernière partie du cours pour savoir quel produit vectoriel calculer.