TUTORAT-SÉANCE 8

Objectifs:

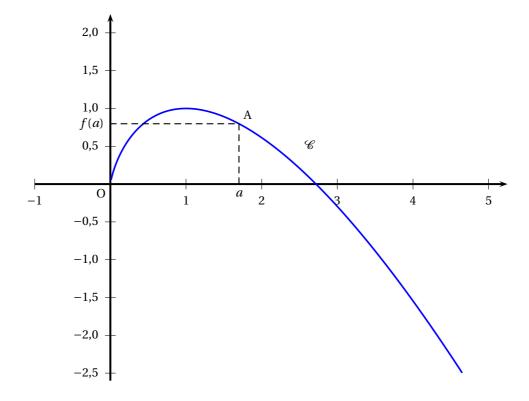
- 1. Utiliser les propriétés algébriques du logarithme népérien.
- 2. Etudier des fonctions dont l'expression comporte du logarithme népérien.

Exercice 1. Soit f la fonction définie sur l'intervalle]0; $+\infty[$ par

$$f(x) = x(1 - \ln x).$$

La courbe représentative $\mathscr C$ de la fonction f est donnée en annexe 1 (à rendre avec la copie).

- 1. Etudier le signe de f(x) suivant les valeurs du nombre réel x.
- 2. Déterminer les limites de la fonction f aux bornes de son ensemble de définition.
- 3. Déterminer la dérivée de la fonction f sur l'intervalle]0; $+\infty[$ et dresser le tableau de variations de la fonction f sur l'intervalle]0; $+\infty[$.
- 4. Soit a un nombre réel strictement positif. On considère la tangente (T_a) au point A de la courbe $\mathcal C$ d'abscisse a.
 - (a) Déterminer, en fonction du nombre réel a, les coordonnées du point A', point d'intersection de la droite (T_a) et de l'axe des ordonnées.
 - (b) Expliciter une démarche simple pour la construction de la tangente (T_a) . Sur l'annexe 1 (à rendre avec la copie) construire la tangente (T_a) au point A placé sur la figure.



Eléments de correction (Exercice 1)

1. Comme x est supérieur à zéro, le signe de f(x) est celui de $1 - \ln x$.

Or $1 - \ln x > 0 \iff 1 > \ln x \iff \ln e > \ln x \iff e > x$ par croissance de la fonction ln.

On a donc:

$$f(x) > 0 \iff 0 < x < e$$
;

$$f(x) = 0 \iff x = e;$$

$$f(x) < 0 \iff x > e$$
.

2. • Au voisinage de zéro : $f(x) = x - x \ln x$.

On sait que $\lim_{x\to 0} x \ln x = 0$, donc $\lim_{x\to 0} f(x) = 0$.

• Au voisinage de plus l'infini :

On a $\lim_{x \to +\infty} x = +\infty$ et $\lim_{x \to 0} 1 - \ln x = -\infty$. Par produit des limites on obtient : $\lim_{x \to 0} f(x) = -\infty$.

Remarque: la lecture de l'annexe correspond bien à ces résultats.

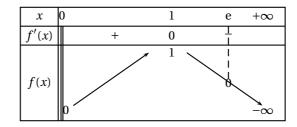
3. f produit de fonctions dérivables sur]0; $+\infty$ [est dérivable sur cet intervalle et :

$$f'(x) = 1 - \ln x + x \times \left(-\frac{1}{x}\right) = 1 - \ln x - 1 = -\ln x.$$

Or $-\ln x > 0 \iff \ln x < 0 \iff \ln x < \ln 1 \iff x < 1$ par croissance de la fonction ln.

De même $-\ln x > 0 \iff x > 1$.

Conclusion : la fonction est croissante sur]0; 1] et décroissante sur $[1; +\infty[$.



4. (a) On a M(x; y) \in (T_a) \iff $y - f(a) = f'(a)(x - a) <math>\iff$ $y - a + a \ln a = -\ln a(x - a) <math>\iff$ $y = -x \ln a + a$.

Le point d'intersection de la droite (T_a) et de l'axe des ordonnées a une abscisse nulle, d'où y = a, ordonnée du point A'.

Conclusion : A'(0; a).

(b) Il suffit de tracer le quart de cercle centré en O de rayon a qui coupe l'axe des ordonnées au point A'(0; a)
 Du point (a; 0) donné sur la figure on trace la verticale qui coupe & au point A(a; f(a)).
 La tangente est la droite (AA'). Voir à la fin la figure.

Exercice 2. On considère la fonction f définie sur \mathbb{R} par

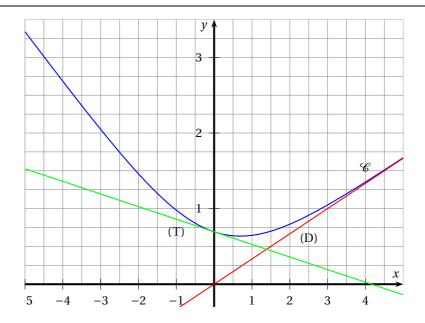
$$f(x) = \ln(1 + e^{-x}) + \frac{1}{3}x.$$

On note (\mathscr{C}) la courbe représentative de la fonction f dans le plan muni d'un repère orthogonal.

- 1. (a) Déterminer la limite de la fonction f en $+\infty$.
 - (b) Montrer que la droite (D) d'équation $y = \frac{1}{3}x$ est asymptote à la courbe (\mathscr{C}). Tracer (D).
 - (c) Etudier la position relative de (D) et de (\mathscr{C}).
 - (d) Montrer que pour tout réel x, $f(x) = \ln(e^x + 1) \frac{2}{3}x$.
 - (e) En déduire la limite de f en $-\infty$.
- 2. (a) On note f' la fonction dérivée de la fonction f.

 Montrer que pour tout x réel, $f'(x) = \frac{e^x 2}{3(e^x + 1)}$.
 - (b) En déduire les variations de la fonction f.

Eléments de correction (Exercice 2)



Partie A

- 1. (a) On a $\lim +\infty e^{-x} = 0$, donc $\lim +\infty 1 + e^{-x} = 1$ donc $\lim +\infty \ln(1 + e^{-x}) = 0$ donc $\lim +\infty f(x) = +\infty$
 - (b) Comme $f(x) \frac{1}{3}x = \ln(1 + e^{-x})$ et que $\lim +\infty \ln(1 + e^{-x}) = 0$, on en déduit que la droite (D) est asymptote à (\mathscr{C}) au voisinage de $+\infty$.
 - (c) Comme $f(x) \frac{1}{3}x = \ln(1 + e^{-x})$ et que $\forall x \in \mathbb{R}, \{-x\} > 0$, on a $1 + e^{-x} > 1$ et donc $\ln(1 + e^{-x}) > 0$, dont on déduit que l'asymptote (D) est en dessous de la courbe (\mathscr{C}) sur \mathbb{R} .
 - (d) Soit x un réel. On a $f(x) = \ln(1 + e^{-x}) + \frac{1}{3}x = \ln(1 + \frac{1}{e^x}) + \frac{1}{3}x = \ln(\frac{e^x + 1}{e^x}) + \frac{1}{3}x = \ln(e^x + 1) \ln(e^x) + \frac{1}{3}x = \ln(e^x + 1) x + \frac{1}{3}x$ soit $f(x) = \ln(e^x + 1) - \frac{2}{3}x$
 - (e) On a $\lim -\infty e^x = 0$ donc $\lim -\infty e^x + 1 = 1$, donc $\lim -\infty \ln(e^x + 1) = 0$ et comme par ailleurs, $\lim -\infty \frac{2}{3}x = +\infty$, on en déduit $\lim -\infty f(x) = +\infty$

(a) f est dérivable en tant que composée d'une fonction $x \mapsto e^x + 1$, définie et dérivable sur \mathbb{R} et à valeurs dans \mathbb{R}^+ , où la fonction ln est dérivable : cette composée est donc dérivable sur \mathbb{R} , la fonction linéaire que l'on y ajoute pour obtenir f(x) étant elle même dérivable sur \mathbb{R} , la fonction f est bien dérivable sur \mathbb{R} . Sa dérivée est : $f'(x) = \frac{e^x}{e^x + 1} - \frac{2}{3} = \frac{3e^x}{3(e^x + 1)} - \frac{2(e^x + 1)}{3(e^x + 1)} = \frac{3e^x - 2(e^x + 1)}{3(e^x + 1)} = \frac{e^x - 2}{3(e^x + 1)}$.

(b) Le dénominateur de f' est strictement positif, donc f' est du signe de son numérateur, et $e^x - 2 > 0 \iff$ $x > \ln(2)$. On en déduit donc que la fonction f est strictement décroissante sur $]-\infty$; $\ln 2$] puis strictement croissante sur $[\ln 2; +\infty[$.

Exercice 3. On considère la suite (u_n) définie, pour tout entier naturel n non nul, par :

$$u_n = \left(1 + \frac{1}{n}\right)^n.$$

1. On considère la fonction f définie sur $[0; +\infty[$ par :

$$f(x) = x - \ln(1+x).$$

- (a) En étudiant les variations de la fonction f, montrer que, pour tout réel x positif ou nul, $\ln(1+x) \le x$.
- (b) En déduire que, pour tout entier naturel n non nul, $\ln(u_n) \le 1$.
- (c) La suite (u_n) peut-elle avoir pour limite $+\infty$?
- 2. On considère la suite (v_n) définie, pour tout entier naturel n non nul, par : $v_n = \ln(u_n)$.
 - (a) On pose $x = \frac{1}{n}$. Exprimer v_n en fonction de x.
 - (b) Que vaut $\lim_{x\to 0} \frac{\ln(1+x)}{x}$? Aucune justification n'est demandée.

Calculer $\lim_{n\to+\infty} v_n$.

(c) En déduire que la suite (u_n) est convergente et déterminer sa limite.

Eléments de correction (Exercice 3)

- (a) La fonction f est dérivable sur \mathbb{R}^+ comme combinaison simple de fonctions qui le sont, et pour tout réel $x \ge 0$: $f'(x) = 1 \frac{1}{x+1} = \frac{x}{1+x} > 0$. La fonction f est donc strictement croissante sur \mathbb{R}^+ , et pour tout $x \ge 0$ on a alors $f(x) \ge f(0)$, c'est-à-dire $x \ln(1+x) \ge 0$, d'où : $\ln(1+x) \le x$.
 - (b) Soit $n \in \mathbb{N}^*$, $\ln(u_n) = n \ln\left(1 + \frac{1}{n}\right)$ et $\frac{1}{n} \in \mathbb{R}^+$, donc d'après la question précédente : $\ln(u_n) \le n \times \frac{1}{n}$, c'est-àdire $ln(u_n) \leq 1$.
 - (c) Pour tout $n \in \mathbb{N}^*$, $\ln(u_n) \le 1$, donc $u_n \le e$ et la suite (u_n) est majorée par e, elle ne peut donc pas diverger
- 2. (a) $v_n = \ln(u_n) = n \ln\left(1 + \frac{1}{n}\right)$, en posant $x = \frac{1}{n}$ on a donc: $v_n = \frac{\ln(1+x)}{x}$.
 - (b) $\lim_{r\to 0} \frac{\ln(1+x)}{r} = 1$ d'après une limite du cours. Quand $n\to +\infty$, on a $x\to 0$, donc : $\lim_{n\to +\infty} v_n = 1$.
 - (c) $v_n = \ln(u_n)$, donc $u_n = e^{v_n}$, et comme (v_n) converge vers 1, on en déduit que (u_n) converge vers e.