TUTORAT-SÉANCE 3

Objectifs:

- 1. Maitriser les propriétés élémentaires de la fonction exponentielle.
- 2. Utiliser la formule $(e^u)' = u'e^u$
- 3. Connaitre et utiliser les résultats sur les limites

Exercice 1. Calculer les limites des fonctions ci-dessous en $+\infty$ et en $-\infty$

1.
$$f(x) = \frac{x}{e^x}$$

4.
$$f(x) = (x^2 - x)e^x$$

7.
$$f(x) = \frac{e^{2x} - e^x}{e^x + 1}$$

$$2. \ f(x) = e^x - x$$

5.
$$f(x) = \frac{e^x}{x^2 + 1}$$

8.
$$f(x) = \frac{e^x(e^{-x}+1)}{e^x+1}$$

3. $f(x) = x^2 x^{2x}$

6.
$$f(x) = x^2 e^{-x}$$

Exercice 2. Soit g la fonction définie sur \mathbb{R}^+ par

$$g(x) = 2\frac{e^{4x} - 1}{e^{4x} + 1}$$

et \mathscr{C}_g sa représentation graphique.

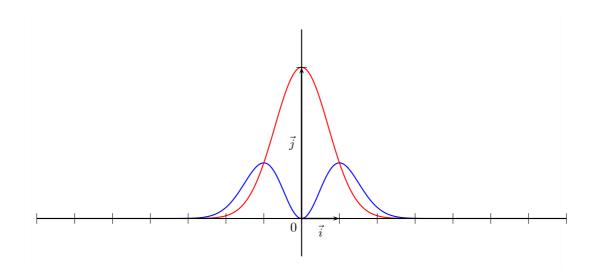
- 1. (a) Montrer que \mathscr{C}_g admet une asymptote Δ dont on donnera une équation.
 - (b) Etudier les variations de g sur \mathbb{R}^+ .
 - (c) Déterminer l'abscisse α du point d'intersection de Δ et de la tangente à \mathscr{C}_g à l'origine.

Exercice 3. On considère les fonctions f et g définies sur $\mathbb R$ par :

$$f(x) = e^{-x^2}$$
 et $g(x) = x^2 e^{-x^2}$

On note respetivement \mathscr{C}_f et \mathscr{C}_g les courbes représentatives de f et g dans un repère orthogonal $(O; \vec{i}; \vec{j})$, dont les tracés se trouvent ci-dessous.

- 1. Identifier \mathscr{C}_f et \mathscr{C}_g , justifier.
- 2. Etudier la parité des fonctions f et g.
- 3. Etudier le sens de variation des fonctions f et g. Etudier les limites de f et g en $\pm \infty$.
- 4. Etudier la position relative des courbes \mathscr{C}_f et \mathscr{C}_g .



Objectifs: Résolution des équations différentielles du type

$$y' = ay + b$$

Exercice 4. Au début de l'épidémie on constate que 0,01 % de la population est contaminé.

Pour t appartenant à [0; 30], on note y(t) le pourcentage de personnes touchées par la maladie après t jours. On a donc y(0) = 0,01.

On admet que la fonction y ainsi définie sur [0; 30] est dérivable, strictement positive et vérifie :

$$y' = 0.05y(10 - y).$$

- 1. On considère la fonction z définie sur l'intervalle $[0\,;\,30]$ par $z=\frac{1}{y}$.

 Démontrer que la fonction y satisfait aux conditions $\begin{cases} y(0) &= 0,01 \\ y' &= 0,05y(10-y) \end{cases}$ si et seulement si la fonction z satisfait aux conditions $\begin{cases} z(0) &= 100 \\ z' &= -0,5z+0,05 \end{cases}$
- 2. (a) En déduire une expression de la fonction z puis celle de la fonction y.
 - (b) Calculer le pourcentage de la population infectée après 30 jours. On donnera la valeur arrondie à l'entier le plus proche.

Exercice 5. On considère l'équation différentielle (E) : $y' = 2y + \cos x$

1. Déterminer deux nombres réels a et b tels que la fonction f_0 définie sur $\mathbb R$ par :

$$f_0(x) = a\cos x + b\sin x$$

soit une solution f_0 de (E).

- 2. Résoudre l'équation différentielle (E_0) : y' = 2y.
- 3. Démontrer que f est solution de (E) si et seulement si $f f_0$ est solution de (E₀).
- 4. En déduire les solutions de (E).
- 5. Déterminer la solution k de (E) vérifiant $k\left(\frac{\pi}{2}\right) = 0$.

Exercice 6. Soit f la fonction définie sur \mathbb{R} par :

$$f(x) = \frac{9}{2}e^{-2x} - 3e^{-3x}.$$

Partie A:

Soit l'équation différentielle (E) : $y' + 2y = 3e^{-3x}$.

- 1. Résoudre l'équation différentielle (E'): y' + 2y = 0.
- 2. En déduire que la fonction h définie sur \mathbb{R} par $h(x) = \frac{9}{2}e^{-2x}$ est solution de (E').
- 3. Vérifier que la fonction g définie sur \mathbb{R} par $g(x) = -3e^{-3x}$ est solution de l'équation (E).
- 4. En remarquant que f = g + h, montrer que f est une solution de (E).

Partie B:

On nomme \mathscr{C}_f la courbe repr
sentative de f dans un repère orthonormal $(O; \vec{i}, \vec{j})$ d'unité 1 cm.

- 1. Montrer que pour tout x de \mathbb{R} on $a: f(x) = 3e^{-2x} \left(\frac{3}{2} e^{-x}\right)$.
- 2. Déterminer la limite de f en $+\infty$ puis la limite de f en $-\infty$.
- 3. Etudier les variations de la fonction f et dresser le tableau de variations de f.
- 4. Calculer les coordonnées des points d'intersection de la courbe \mathscr{C}_f avec les axes du repère.
- 5. Calculer f(1) et tracer l'allure de la courbe \mathscr{C}_f .