TUTORAT-SÉANCE 10

Objectifs:

- 1. Révisions type BAC.
- 2. Suites et intégrales.
- 3. Calcul d'intégrales.

Exercice 1. Calculer les intégrales suivantes : (dans certains cas il pourra être utile d'utiliser une IPP)

1.
$$\int_{1}^{e} x \ln x dx$$

Tutorat-séance 10

$$3. \int_{\frac{\pi}{2}}^{x} t \sin t dt$$

2.
$$\int_0^1 \frac{1-x^2}{(1+x^2)^2} dx$$

4.
$$\int_0^1 x e^{x^2} dx$$

Exercice 2. Soit f et g deux fonctions définies, pour tout $x \in \mathbb{R}$ par :

$$f(x) = -x^2 + 2$$
 et $g(x) = x^2 - 2x - 2$

On note \mathscr{C}_f et \mathscr{C}_g les courbes représentatives respectivement des fonctions f et g dans $(0; \vec{i}, \vec{j})$, un repère orthonormé du plan d'unité 3 cm.

- 1. Représenter \mathcal{C}_f et \mathcal{C}_g sur un même graphique.
- 2. Etudier la position de \mathcal{C}_f par rapport à \mathcal{C}_g sur [–1;1].
- 3. Calculer l'aire \mathscr{A}' (en cm²) de la partie du plan délimitée par les courbes \mathscr{C}_f et \mathscr{C}_g et les droites d'équation x = -1 et x = 2.

Exercice 3. Amérique du nord 2009

Partie A: Restitution organisée de connaissances

On supposera connus les résultats suivants :

Soient u et v deux fonctions continues sur un intervalle [a;b] avec a < b.

• Si $u \ge 0$ sur [a; b] alors $\int_a^b u(x) \, dx \ge 0$. • Pour tous réels α et β , $\int_a^b [\alpha u(x) + \beta v(x)] \, dx = \alpha \int_a^b u(x) \, dx + \beta \int_a^b v(x) \, dx$. Démontrer que si f et g sont deux fonctions continues sur un intervalle [a; b] avec a < b et si, pour tout x de $[a; b], f(x) \le g(x) \text{ alors } \int_a^b f(x) dx \le \int_a^b g(x) dx.$

Partie B

On considère la fonction f définie sur l'intervalle [0;1] par $f(x) = e^{-x^2}$ et on définit la suite (u_n) par :

$$\begin{cases} u_0 = \int_0^1 f(x) \, dx = \int_0^1 e^{-x^2} \, dx \\ \text{pour tout entier naturel } n \text{ non nul, } u_n = \int_0^1 x^n f(x) \, dx = \int_0^1 x^n e^{-x^2} \, dx \end{cases}$$

- (a) Démontrer que, pour tout réel x de l'intervalle $[0; 1], \frac{1}{e} \le f(x) \le 1$.
 - (b) En déduire que $\frac{1}{e} \le u_0 \le 1$.
- 2. Calculer u_1 .
- (a) Démontrer que pour tout entier naturel n, $0 \le u_n$.
 - (b) Etudier les variations de la suite (u_n) .
 - (c) En déduire que la suite (u_n) est convergente.
- (a) Démontrer que, pour tout entier naturel n, $u_n \le \frac{1}{n+1}$
 - (b) En déduire la limite de la suite (u_n) .

Eléments de correction (Amérique du nord 2009)

Partie A: Restitution organisée de connaissances

Voir le cours pour les détails, voici la démarche :

Par linéarité de l'intégrale (second rappel) : $\int_a^b f(x) dx \le \int_a^b g(x) dx \iff \int_a^b (f-g)(x) dx \le 0$.

Partie B

1. (a) f est la composée de la fonction $x \mapsto -x^2$, décroissante sur [0; 1], suivie de la fonction exponentielle croissante sur \mathbb{R} . f est donc décroissante sur [0; 1].

On peut bien sur argumenter sur la dérivabilité de f puis le signe de sa dérivée.

On en déduit que, pour tout x de [0; 1], $f(1) \le f(x) \le f(0) \Longleftrightarrow \frac{1}{e} \le f(x) \le 1$

(b) Par croissance de l'intégrale, on déduit de la question précédente :

$$\int_0^1 \frac{1}{e} \, \mathrm{d}x \le \int_0^1 f(x) \, \mathrm{d}x \le \int_0^1 1 \, \mathrm{d}x \Longleftrightarrow \frac{1}{e} \le u_0 \le 1$$

2. $u_1 = \int_0^1 x f(x) dx = \int_0^1 x e^{-x^2} dx$

On pose $u(x) = -x^2$, ainsi u'(x) = -2x et $(u'e^u)(x) = -2xf(x) \iff xf(x) = -\frac{1}{2}u'(x)e^{u(x)}$.

On a donc: $u_1 = \left[-\frac{1}{2} e^{-x^2} \right]_0^1 = -\frac{1}{2e} + \frac{1}{2} = \frac{1}{2} \left(1 - \frac{1}{e} \right).$

- 3. (a) Comme la fonction exponentielle est positive sur \mathbb{R} , pour tout x de [0; 1], $x^n f(x) \ge 0$. Enfin, comme les bornes sont dans le bon ordre, par positivité de l'intégrale, on a bien le résultat.
 - (b) Pour tout n dans \mathbb{N} , $u_{n+1} u_n = \int_0^1 x^{n+1} f(x) x^n f(x) \, \mathrm{d}x = \int_0^1 (x-1) x^n f(x) \, \mathrm{d}x \le 0$ car la fonction intégrée est clairement négative sur [0; 1]. La suite (u_n) est décroissante.
 - (c) La suite (u_n) est décroissante et minorée par 0 donc elle converge.
- 4. (a) D'aprè!s la question 1. a., pour tout x de [0; 1], $f(x) \le 1$, par croissance de l'intégrale :

$$\int_0^1 x^n f(x) \, \mathrm{d}x \le \int_0^1 x^n \, \mathrm{d}x \Longleftrightarrow \int_0^1 x^n f(x) \, \mathrm{d}x \le \left[\frac{x^{n+1}}{n+1} \right]_0^1 \Longleftrightarrow \int_0^1 x^n f(x) \, \mathrm{d}x \le \frac{1}{n+1}$$

(b) D'après les questions 3. a. et 4. a., on a $0 \le u_n \le \frac{1}{n+1}$ et $\lim_{n \to +\infty} \frac{1}{n+1} = 0$ Avec le théorème des gendarmes la suite converge vers 0.

Exercice 4. Polynésie Juin 2009

Le plan est muni d'un repère orthogonal $(0; \vec{i}, \vec{j})$.

Partie A

La courbe (\mathscr{C}), donnée ci-dessous, est la courbe représentative d'une fonction f dérivable sur $[0; +\infty[$, de fonction dérivée f' continue sur $[0; +\infty[$.

La courbe (\mathscr{C}) passe par les points O et A $\left(1; \frac{1}{2e}\right)$ et, sur [0; 1], elle est au dessus du segment [OA].

- 1. Montrer que $\int_0^1 f'(x) \, \mathrm{d}x = \frac{1}{2e}$
- 2. Montrer que $\int_0^1 f(x) dx \ge \frac{1}{4e}$

Partie B

On sait désormais que la fonction f considérée dans la partie A est définie sur $[0; +\infty[$ par :

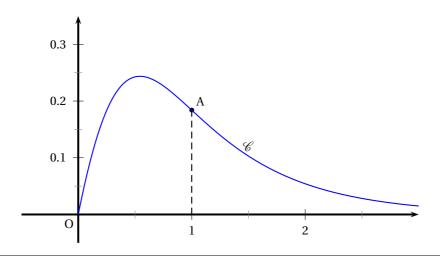
$$f(x) = \frac{x\mathrm{e}^{-x}}{x^2 + 1}.$$

- 1. Déterminer la limite de f en $+\infty$. Interpréter graphiquement le résultat obtenu.
- 2. On considère la fonction g définie sur $[0; +\infty[$ par : $g(x) = x^3 + x^2 + x 1$. Etablir que l'équation g(x) = 0 admet une solution unique α dans l'intervalle $[0; +\infty[$.
- 3. (a) Montrer que pour tout x de $[0; +\infty[$, f'(x) et g(x) sont de signes contraires.

- (b) En déduire les variations de f sur $[0; +\infty[$.
- 4. On considère la suite (u_n) définie pour tout entier naturel n par :

$$u_n = \int_n^{2n} f(x) \, \mathrm{d}x.$$

- (a) Montrer que pour tout x de $[0; +\infty[$, $0 \le \frac{x}{x^2 + 1} \le \frac{1}{2}$.
- (b) Montrer que pour tout entier naturel n, $0 \le u_n \le \frac{1}{2} (e^{-n} e^{-2n})$.
- (c) En déduire la limite de u_n quand n tend vers $+\infty$.



Eléments de correction (Polynésie 2009)

Partie A

1. f' étant définie et continue sur [0;1] est intégrable sur cet intervalle et

$$\int_0^1 f'(x) \, \mathrm{d}x = \left[f(x) \right]_0^1 = f(1) - f(0) = \frac{1}{2e} - 0 = \frac{1}{2e}.$$

2. On sait que sur [0; 1], la courbe (\mathscr{C}) est au dessus du segment [OA]; l'intégrale de f sur [0; 1] égale à l'aire de la surface limitée par (\mathscr{C}) et les droites y=0, x=0 et x=1, est supérieure à l'aire du triangle OIA (avec I(1; 0)).

Cette aire est égale à
$$\frac{OI \times IA}{2} = \frac{1 \times \frac{1}{2e}}{2} = \frac{1}{4e}$$
.

Donc
$$\int_0^1 f(x) \, \mathrm{d}x \ge \frac{1}{4e}$$

Partie B

$$f(x) = \frac{x\mathrm{e}^{-x}}{x^2 + 1}.$$

1. On sait que $\lim_{x \to +\infty} e^{-x} = 0$, $\lim_{x \to +\infty} x^n e^{-x} = 0$, quel que soit $n \in \mathbb{N}$.

De plus
$$\lim_{x \to +\infty} x^2 = 0$$
, donc $\lim_{x \to +\infty} f(x) = 0$

De plus $\lim_{x\to +\infty} x^2 = 0$, donc $\lim_{x\to +\infty} f(x) = 0$. L'axe des abscisses est donc asymptote horizontale à $\mathscr C$ au voisinage de plus l'infini.

2. g fonction polynôme est dérivable sur [0; $+\infty$ [et sur cet intervalle $g'(x) = 3x^2 + 2x + 1$.

Or
$$3x^2 + 2x + 1 = 3\left(x^2 + \frac{2}{3}x\right) + 1 = 3\left(x + \frac{1}{3}\right)^2 - \frac{1}{3} + 1 = 3\left(x + \frac{1}{3}\right)^2 + \frac{2}{3} > \frac{2}{3} > 0$$

Conclusion $g'(x) > 0 \Rightarrow g$ est croissante sur $[0; +\infty[$.

On a g(0) = -1 et g(1) = 2. Comme la fonction est croissante sur [0; 1], l'équation g(x) = 0 a une solution unique sur [0; 1], donc sur $[0; +\infty[$.

3. (a) f est de la forme $\frac{u}{v}$, avec $u = xe^{-x}$ et $v = x^2 + 1$. De $u' = e^{-x}(1-x)$, v' = 2x et $f' = \frac{u'v - uv'}{v^2}$, on en déduit

 $f'(x) = \frac{e^{-x}(1-x)(x^2+1) - xe^{-x} \times 2x}{(x^2+1)^2}$ qui est du signe du numérateur donc de $e^{-x}(1-x)(x^2+1) - xe^{-x} \times 2x = e^{-x}(x^2+1-x^3-x-2x^2) = 0$

$$2x = e^{-x} (x^2 + 1 - x^3 - x - 2x^2) =$$

$$e^{-x}(-x^3-x^2-x+1)$$
 ou encore $de^{-x^3-x^2-x+1}=-(x^3+x^2+x-1)=-g(x)$.

f' et g ont donc des signes contraires.

- (b) On a vu que sur $[0; \alpha]$, g(x) < 0, donc $f'(x) > 0 \Rightarrow f$ est croissante sur $[0; \alpha]$ et sur $[\alpha; +\infty[$, g(x) > 0, donc $f'(x) < 0 \Rightarrow f$ est décroissante sur $[\alpha; +\infty[$.
- 4. (a) Il est évident que quel que soit $x \in [0; +\infty[, (x-1)^2 \ge 0 \iff x^2+1-2x \ge 0 \iff x^2+1 \ge 2x \iff \frac{1}{2} \ge 0$ $\frac{x}{x^2+1} \Longleftrightarrow \frac{x}{x^2+1} \leqslant \frac{1}{2}.$
 - (b) On a $x \ge 0 \iff -x \le 0 \iff e^{-x} \le e^0$ (par croissance de la fonction

exponentielle)
$$\iff$$
 $e^{-x} \le 1 \iff \frac{xe^{-x}}{x^2 + 1} \le \frac{x}{x^2 + 1}$

En posant $u(x) = x^2 + 1$, u est dérivable et u'(x) = 2x

$$Donc \frac{x}{x^2 + 1} = \frac{1}{2} \frac{u'}{u}.$$

On a donc $u_n = \int_n^{2n} f(x) dx = \int_n^{2n} \frac{x e^{-x}}{x^2 + 1} dx \le \int_n^{2n} \frac{1}{2} e^{-x} dx$. (d'après la question **4. a.**)

Or
$$\int_{n}^{2n} \frac{1}{2} e^{-x} dx = \left[-\frac{1}{2} e^{-x} \right]_{n}^{2n} = \frac{1}{2} \left[-e^{2n} + e^{-n} \right].$$

Conclusion $u_n \leq \frac{1}{2} (e^{-n} - e^{-2n})$.

(c) Comme $\lim_{n \to +\infty} e^{-n} = \lim_{n \to +\infty} e^{-2n} = 0$, on en déduit par application du théorème des gendarmes :

$$\lim_{n\to+\infty}u_n=0.$$

Exercice 5. France sept. 2008 On considère la suite numérique (J_n) définie, pour tout entier naturel n non nul, par

, pour tout entier naturel
$$n$$
 non nul

$$J_n = \int_1^n e^{-t} \sqrt{1+t} \, \mathrm{d}t.$$

- 1. Démontrer que la suite (J_n) est croissante.
- 2. Dans cette question, le candidat est invité à porter sur sa copie les étapes de sa démarche même si elle n'aboutit pas.

On définit la suite (I_n) , pour tout entier naturel n non nul, par :

$$I_n = \int_1^n (t+1)e^{-t} dt$$
.

- (a) Justifier que, pour tout $t \ge 1$, on a $\sqrt{t+1} \le t+1$.
- (b) En déduire que $J_n \leq I_n$.
- (c) Calculer I_n en fonction de n. En déduire que la suite (J_n) est majorée par un nombre réel (indépendant de
- (d) Que peut-on en conclure pour la suite (J_n) ?

Eléments de correction (France 2008)

1. On calcule $J_{n+1} - J_n = \int_1^{n+1} e^{-t} \sqrt{1+t} dt - \int_1^n e^{-t} \sqrt{1+t} dt = \int_1^{n+1} e^{-t} \sqrt{1+t} dt$.

Pour
$$t \in [n; n+1]$$
, $\sqrt{1+t} > 0$ et $e^{-t} > 0$.

L'intégrale d'une fonction positive sur un intervalle où n < n+1 est positive, donc $J_{n+1} - J_n \ge 0 \iff J_{n+1}J_n \ge J_n$, ce qui montre que la suite (J_n) est croissante.

2. (a) Posons u = t+1, donc $u \ge 2$; or $0 \le \sqrt{u} \le u$, sur $[2; +\infty]$, car $0 \le u \le u^2$. Remarque: en fait relation est vraie pour $t \ge 0$.

(b)
$$\sqrt{t+1} \le t+1 \iff \sqrt{t+1}e^{-t} \le (t+1)e^{-t}$$
 ce qui entraı̂ne que $\int_1^n e^{-t} \sqrt{1+t} \, dt \le \int_1^n e^{-t} (1+t) \, dt \iff J_n \le I_n$.

(c) Intégrons par parties :

$$\begin{cases} u(t) &= t+1 \\ dv(t) &= e^{-t} \end{cases} \begin{cases} du(t) &= 1 \\ v(t) &= -e^{-t} \end{cases}$$

Les fonctions dérivées ci-dessus étant continues $I_n = \left[-(t+1)e^{-t} \right]_1^n - \int_1^n -e^{-t} dt = \left[-(t+1)e^{-t} \right]_1^n + \left[e^{-t} \right]_1^n = \left[-(t+2)e^{-t} \right]_1^n = -(n+2)e^{-n} + 3e^{-1}.$

Comme $(n+2)e^{-n} \ge 0$, I_n est donc majorée par $3e^{-1}$

(d) L'inégalité démontrée au **b.** montre que $J_n \le 3e^{-1}$. La suite (J_n) est donc majorée et croissante : elle a donc une limite inférieure ou égale à $3e^{-1}$.