R.O.C : Restitution Organisée des Connaissances

Terminale S Extrait d'annales

Table des matières

	I-1	métrie Nombres Complexes	2
		Espace (Produit Scalaire et Barycentre)	
II)	Ana	lyse	7
	II-1	lyse Suites	7
	II-2	Exponentielle	O
	II-3	Logarithme népérien	3
	II-4	Intégration	6
III	Prol	pabilités 17	7
	III-1	Probabilités discrètes	7
	III-2	Probabilités continues	R

I) Géométrie

I-1 Nombres Complexes

Proposition 1:

Prrequis

Soit z un nombre complexe tel que z = a + bi où a et b sont deux nombre réels. On note \overline{z} , le nombre complexe défini par $\overline{z} = a - bi$.

Questions

- 1. Démontrer que, pour tous nombres complexes z et z', $\overline{z \times z'} = \overline{z} \times \overline{z'}$.
- 2. Démontrer que, pour tout entier naturel n non nul, et tout nombre complexe $z, \overline{z^n} = (\overline{z})^n$.

Preuve

1.

$$\overline{z \times z'} = \overline{(a+ib)(c+id)} = \overline{ac-bd+i(bc+ad)} = ac+bd-i(bc+ad)$$

D'autre part,

$$\overline{z} \times \overline{z'} = (a - ib)(c - id) = ac - bd - i(bc + ad)$$

2. On vient de démontrer que la propriété pour n=2Supposons que $\overline{z^{n-1}} = (\overline{z})^{n-1}$, on a alors :

$$\overline{z^n} = \overline{z^{n-1} \times z} = \overline{z^{n-1}} \times \overline{z} = (\overline{z})^{n-1} \times \overline{z} = (\overline{z})^n$$

Proposition 2:

- 1. Démontrer qu'un nombre complexe z est imaginaire pur si et seulement si $\overline{z} = -z$.
- 2. Démontrer qu'un nombre complexe z est réel si et seulement si $\overline{z}=z$.
- 3. Démontrer que pour tout nombre complexe z, on a l'égalité : $z\overline{z} = |z|^2$.

Preuve

1. et 2. Notons z = x + iy avec x et y deux réels. Ainsi :

$$z + \overline{z} = x + iy + x - iy = 2x = 2\Re e(z)$$
 et $z - \overline{z} = x + iy - (x - iy) = 2iy = 2i\Im m(z)$

On en déduit immédiatement que :

$$z$$
 est réel $\iff \Im m(z) = 0 \iff z - \overline{z} = 0 \iff z = \overline{z}$

z est imaginaire pur
$$\iff \Re e(z) = 0 \iff z + \overline{z} = 0 \iff z = -\overline{z}$$

2.
$$z\overline{z} = (x+iy)(x-iy) = x^2 - ixy + ixy - i^2y = x^2 + y^2 = |z|^2$$

Proposition 3:

Le plan complexe est rapporté à un repre orthonormal direct $(O; \overrightarrow{e_1}, \overrightarrow{e_2})$. Soient A, B et C trois points du plan d'affixes respectives a, b, c.

On suppose que A et B sont distincts, ainsi que A et C.

On rappelle que $(\overrightarrow{e_1}, \overrightarrow{AB}) = \arg(b-a)$ [2 π].

Montrer que $(\overrightarrow{AB}, \overrightarrow{AC}) = \arg\left(\frac{c-a}{b-a}\right)$

Preuve

$$\begin{split} \left(\overrightarrow{AB}, \ \overrightarrow{AC}\right) &= \left(\overrightarrow{AB}, \overrightarrow{e_1}\right) + \left(\overrightarrow{e_1}, \overrightarrow{AC}\right) = -\left(\overrightarrow{e_1}, \overrightarrow{AB}\right) + \left(\overrightarrow{e_1}, \overrightarrow{AC}\right) \\ &= -\mathrm{arg}(b-a) + \mathrm{arg}(c-a) = \mathrm{arg}\left(\frac{c-a}{b-a}\right) \end{split} \ [2\pi]$$

Proposition 4:

Prérequis : On rappelle les deux résultats suivants :

i. Si z est un nombre complexe non nul, on a l'équivalence suivante :

$$\left\{ \begin{array}{lcl} |z| & = & r \\ \arg z & = & \theta \; [2\pi] \end{array} \right. \iff \left\{ \begin{array}{lcl} z & = & r(\cos\theta + \mathrm{i}\sin\theta) \\ r & > & 0 \end{array} \right.$$

ii. Pour tous nombres rels a et b:

$$\begin{cases} \cos(a+b) &= \cos a \cos b - \sin a \sin b \\ \sin(a+b) &= \sin a \cos b + \sin b \cos a \end{cases}$$

Soient z et z' deux nombres complexes non nuls. Démontrer les relations :

$$|zz'| = |z| |z'|$$
 et $\arg(zz') = \arg(z) + \arg(z')$ [2 π]

\underline{Preuve}

$$|zz'|^2 = zz'\overline{zz'} = zz'\overline{z}\overline{z'} = z\overline{z}z'\overline{z'} = |z|^2|z'|^2$$

Comme un module est positif on obtient : |zz'| = |z||z'|

Soit $z = r(\cos \theta + i \sin \theta)$ et $z' = r'(\cos \theta' + i \sin \theta')$, alors

$$zz' = rr'[(\cos\theta\cos\theta' - \sin\theta\sin\theta') + i(\sin\theta\cos\theta' + \cos\theta\sin\theta')]$$

Vous qui connaissez parfaitement vos formules d'addition (vu en première), vous en déduisez que

$$zz' = z = rr'(\cos(\theta + \theta') + i\sin(\theta + \theta'))$$

Ainsi, nous arrivons au résultat capital : $\arg(zz') = \arg(z) + \arg(z')[2\pi]$

Proposition 5:

Le plan complexe est rapporté à un repre orthonormal direct $(O; \overrightarrow{e_1}, \overrightarrow{e_2})$.

Pour $M \neq \Omega$, on rappelle que le point M' est l'image du point M par la rotation r de centre Ω et d'angle de mesure θ si et seulement si :

$$\left\{ \begin{array}{rcl}
\Omega M' &=& \Omega M & (1) \\
\left(\overrightarrow{\Omega M}; \overrightarrow{\Omega M'}\right) &=& \theta \ 2k\pi \ \mathrm{prs} \ (k \in \mathbb{Z}) & (2)
\end{array} \right.$$

- 1. Soient z, z' et ω les affixes respectives des points M, M' et Ω . Traduire les relations (1) et (2) en termes de modules et d'arguments.
- 2. En déduire l'expression de z' en fonction de z, θ et ω

- Preuve

 1. La r

 La r

 2. Le r

 la fo 1. La relation (1) se traduit par $|z' - \omega| = |z - \omega|$ ou encore $\frac{|z' - \omega|}{|z - \omega|} = 1$ La relation (2) se traduit par : $arg\left(\frac{z'-\omega}{z-\omega}\right) = \theta[2\pi]$
 - 2. Le nombre complexe $\frac{z'-\omega}{z-\omega}$ a pour module 1 et pour argument θ , on peut donc écrire, en utilisant la forme exponentielle, que :

$$\frac{z' - \omega}{z - \omega} = e^{i\theta}$$

On en déduit alors que : $z' - \omega = e^{i\theta}(z - \omega) \iff z' = e^{i\theta}(z - \omega) + \omega$

Proposition 6:

On suppose connus les résultats suivants :

1. Dans le plan complexe, on donne par leurs affixes z_A , z_B et z_C trois points A, B et C. Alors $\left|\frac{z_B-z_C}{z_A-z_C}\right|=\frac{CB}{CA}$ et $\arg\left(\frac{z_B-z_C}{z_A-z_C}\right)=\left(\overrightarrow{CA},\ \overrightarrow{CB}\right)$ (2π) .

Alors
$$\left| \frac{z_B - z_C}{z_A - z_C} \right| = \frac{CB}{CA} \text{ et } \arg\left(\frac{z_B - z_C}{z_A - z_C} \right) = \left(\overrightarrow{CA}, \overrightarrow{CB} \right)$$
 (2 π)

2. Soit z un nombre complexe et soit θ un réel : $z = e^{i\theta}$ si et seulement si |z| = 1 et $\arg(z) = \theta + 2k\pi$, où k est un entier relatif.

Démonstration de cours : démontrer que la rotation r d'angle α et de centre Ω d'affixe ω est la transformation du plan qui à tout point M d'affixe z associe le point M' d'affixe z' tel que

$$z' - \omega = e^{i\alpha}(z - \omega).$$

Preuve

On a:
$$\Omega M = \Omega M' \iff \frac{\Omega M}{\Omega M'} = 1 \iff \frac{|z' - \omega|}{|z - \omega|} = 1$$

On a : $\Omega M = \Omega M' \iff \frac{\Omega M}{\Omega M'} = 1 \iff \frac{|z' - \omega|}{|z - \omega|} = 1$ De plus $\arg\left(\frac{z' - \omega}{z - \omega}\right) = \left(\overline{\Omega M'}, \ \overline{\Omega M}\right) \quad (2\pi)$, par of 1 et pour argument θ , on peut donc écrire, en utilisé $\frac{z' - \omega}{z - \omega}$ On en déduit alors que : $z' - \omega = e^{i\theta}(z - \omega)$ De plus $\arg\left(\frac{z'-\omega}{z-\omega}\right) = \left(\overrightarrow{\Omega M'}, \overrightarrow{\Omega M}\right)$ (2 π), par conséquent le nombre complexe $\frac{z'-\omega}{z-\omega}$ a pour module 1 et pour argument θ , on peut donc écrire, en utilisant la forme exponentielle, que

$$\frac{z' - \omega}{z - \omega} = e^{i\theta}$$

I-2 Espace (Produit Scalaire et Barycentre)

Proposition 7:

1. Soit \mathscr{S} la sphère de centre $\Omega(x_0; y_0; z_0)$ et de rayon r, démontrer que \mathscr{S} admet une équation de la forme:

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$$

2. Déterminer l'équation de la sphère $\mathcal S$ de diamètre [AB] avec A(0;0;1) et B(1;2;3). Préciser son centre Ω et son rayon r.

$\Sigma Solutions:$

- 1. $M(x; y; z) \in \mathscr{S} \iff \Omega M^2 = r^2 \iff (x x_0)^2 + (y y_0)^2 + (z z_0)^2 = r^2$.
- 2. Le centre Ω de cette sphère a pour coordonnées (0,5;1;2). De plus le rayon

$$r = \Omega A = \sqrt{0,5^2 + 1^2 + 1^2} = \sqrt{2,25} = \sqrt{\frac{9}{4}} = \frac{3}{2}$$

D'où:

$$\mathscr{S}: (x-0,5)^2 + (y-1)^2 + (z-2)^2 = \frac{9}{4}$$

Proposition 8:

Soit A le point de coordonnées $(x_a; y_a; z_a)$ et \mathscr{P} le plan d'équation ax + by + cz + d = 0 où a, b et c sont des réels qui ne sont pas tous nuls.

- 1. Donner les coordonnées d'un vecteur normal \vec{n} au plan \mathscr{P} .
- 2. On note $H(x_H; y_H; z_H)$ le projeté orthogonal de A sur \mathscr{P} déterminer de deux manières différentes $\overrightarrow{AH} \cdot \overrightarrow{n}$.
- 3. Montrer finalement que:

$$d(A; \mathscr{P}) = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

a. On utilisera la définition dans un premier temps, puis la formule faisant intervenir le cosinus

$\Sigma Solutions:$

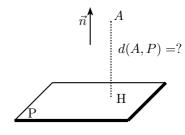
- 1. $\vec{n}(a;b;c)$ est normal à \mathscr{P} .
- 2. Notons $H(x_H; y_H; z_H)$ le projeté orthogonal de $A \operatorname{sur} P$.

Nous savons que le vecteur $\vec{n}(a;b;c)$ est normal à

Donc les vecteurs \vec{n} et \overrightarrow{AH} sont colinéaires.

Il existe un réel t tel que :

$$\overrightarrow{AH} = t\overrightarrow{n}$$



Par conséquent

$$\overrightarrow{AH} \cdot \overrightarrow{n} = \pm AH \times ||\overrightarrow{n}||$$

Mais encore, (notons que $H \in P \Longrightarrow ax_H + by_H + cz_H + d = 0$)

$$\overrightarrow{AH} \cdot \vec{n} = a(x_H - x_A) + b(y_H) - y_A) + c(z_H - z_A) = -(ax_A + by_A + cz_A + d)$$

3. Au final:

$$AH \times ||\vec{n}|| = |ax_A + by_A + cz_A + d| \iff AH = \frac{|ax_A + by_A + cz_A + d|}{||\vec{n}||} = \frac{|ax_A + by_A + cz_A + d|}{\sqrt{a^2 + b^2 + c^2}}$$

Proposition 9:

On considère l'espace muni d'un repère orthonormal $(O; \vec{i}, \vec{j}, \vec{k})$ Montrer l'équation cartésienne d'un plan dont on connaît un vecteur normal $\vec{n}(a;b;c)$ et un point $A(x_0;y_0;z_0)$ est de la forme :

$$ax + by + cz + d = 0$$

Preuve

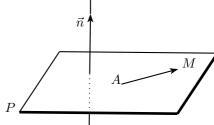
On a, pour tout point M du plan P,

désiré

$$\overrightarrow{AM} \cdot \vec{n} = 0$$

Réciproquement, si M est un point de l'espace tel que $\overrightarrow{AM} \cdot \vec{n} = 0$, alors $M \in P$ On a donc le résultat suivant :

$$M(x; y; z) \in P \iff \overrightarrow{AM} \cdot \vec{n} = 0$$



i.e

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0 \iff ax+by+cz-ax_0-by_0-cz_0=0$$

En posant $d = -ax_0 - by_0 - cz_0$ on obtient le résultat

II) Analyse

II-1 Suites

Proposition 10:

Démontrer à l'aide de la définition et des deux propriétés ci-dessous que si (u_n) et (v_n) sont deux suites adjacentes, alors elles sont convergentes et elles ont la même limite.

 $\textbf{\textit{Définition}}$: Deux suites sont adjacentes lorsque l'une est croissante, l'autre est deroissante et la diffrence des deux converge vers 0.

Propriété: Si deux suites (u_n) et (v_n) sont adjacentes avec (u_n) croissante et (v_n) décroissante alors pour tout entier naturel $n, v_n \ge u_n$.

 ${\it Propriét\'e}$: Toute suite croissante et majorée converge ; toute suite décroissante et minorée converge .

Preuve

On considère deux suites (u_n) et (v_n) adjacentes, avec (u_n) croissante et (v_n) décroissante. Montrons tout d'abord que $u_n \leq v_n$, pour cela notons $w_n = v_n - u_n$, on a :

$$w_{n+1} - w_n = (v_{n+1} - v_n) - (u_{n+1} - u_n) \le 0$$

Par conséquent (w_n) est une suite décroissante, on a donc pour tout m > n, $w_m \le w_n$, et par passage à la limite lorsque $m \longrightarrow +\infty$ on obtient :

$$0 \le w_n \Longleftrightarrow u_n \le v_n$$

Et aussi:

$$u_0 \le u_n \le v_n \le v_0$$

Comme (u_n) est une suite croissante majorée, elle converge vers un certain réel l.

De même comme (v_n) est une suite décroissante minorée, elle converge vers un certain réel l'

Enfin $\lim_{n \to +\infty} (v_n - u_n) = l' - l = 0$

Par unicité de la limite on obtient : l=l'

Proposition 11:

Si une suite (u_n) converge alors sa limite l est unique

Preuve

Raisonnons par l'absurde et supposons que la suite (u_n) admet deux limites l_1 et l_2 telles que $l_1 < l_2$.

Notons $d = l_2 - l_1$ Par définition, l'intervalle ouvert I_1 de centre l_1 et de rayon $\frac{d}{2}$ contient tous les termes

de la suite à partir d'un certain rang, de même l'intervalle ouvert I_2 de centre l_2 et de rayon $\frac{d}{2}$ contient tous les termes de la suite à partir d'un certain rang, par conséquent $I_1 \cap I_2$ est un intervalle contenant tous les termes de la suite à partir d'un certain rang.

Or, $I_1 \cap I_2 = \emptyset$, ce qui est absurde

Par conséquent la suite (u_n) ne peut admettre qu'une limite.

Proposition 12:

Soit (u_n) une suite définie par : $u_n = q^n$ (avec q > 0) alors :

- Si $q \in [0; 1[$ la suite (u_n) est convergente vers 0
- Si q=1 alors la suite (u_n) est constante et donc convergente vers 1
- Si q > 1 alors la suite (u_n) est divergente (vers $+\infty$).

Pour cette démonstration nous allons utiliser le résultat suivant ¹

Lemme 1 : Inégalité de Bernoulli

Pour tout réel x positif et pour tout entier n, on a :

$$(1+x)^n \ge 1 + nx$$

<u> (Preuve</u> du lemme

Notons $\mathcal{P}(n)$ la propriété $(1+x)^n \geq 1 + nx$ est vraie

 $\mathcal{P}(0)$ et $\mathcal{P}(1)$ sont évidentes

Montrons que $\mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$.

On suppose donc que $(1+x)^n \ge 1 + nx$ et on souhaite montrer que : $(1+x)^{n+1} \ge 1 + (n+1)x$

On a alors, pour tout $x \geq 0$:

$$(1+x)^n \ge 1 + nx$$

$$\iff (1+x)^{n+1} \geq (1+nx)(1+x) \qquad \text{en multipliant membre à membre par } (1+x) > 0$$

$$\iff (1+x)^{n+1} \ge 1 + nx + x + nx^2$$

$$\iff$$
 $(1+x)^{n+1} \ge 1 + (n+1)x + nx^2$

$$\iff$$
 $(1+x)^{n+1} \ge 1 + (n+1)x$ puisque $nx^2 \ge 0$

Résumons: On a donc $\mathscr{P}(0)$ mais aussi, $\forall n \in \mathbb{N}, \mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$, par conséquent on a : pour tout réel x positif et pour tout entier n, on a :

$$(1+x)^n \ge 1 + nx$$

<u>Preuve</u> du théorème

$$- q > 1$$

Posons x = q - 1, on a alors x > 0, et d'après l'inégalité de Bernoulli :

$$q^n = (1+x)^n > 1+nx$$

Or, $\lim_{n\to +\infty} 1 + nx = +\infty$, par comparaison on en déduit :

$$\lim_{n \to +\infty} q^n = +\infty$$

La suite (u_n) diverge donc vers $+\infty$

Si q=0 le résultat est évident, sinon posons $q'=\frac{1}{q}$, dans ce cas $q'\in]1;+\infty[$

D'après le résultat précédent :

$$\lim_{n \to +\infty} q'^n = +\infty$$

Par passage à l'inverse nous obtenons donc :

$$\lim_{n\to +\infty}q^n=0$$

La suite (u_n) converge donc vers 0 q=1, le résultat est alors évident.

^{1.} un résultat servant une démonstration est usuellement appelé Lemme

Proposition 13:

Prérequis : définition d'une suite tendant vers plus l'infini.

« une suite tend vers $+\infty$ si, pour tout réel A, tous les termes de la suite sont, à partir d'un certain rang, supérieurs à A ».

Démontrer le théorème suivant : une suite croissante non majorée tend vers $+\infty$.

Preuve

Soit A un réel, puisque (u_n) est une suite non majorée alors il existe un certain entier, disons n_0 tel que :

$$u_{n_0} \ge A$$

Puisque (u_n) est croissante, alors pour tout $n \geq n_0$ on a :

$$u_n \ge u_{n_0} \ge A$$

ainsi pour tout réel A, tous les termes de la suite sont, à partir d'un certain rang n_0 , supérieurs à A ce qui, par définition, nous permet de conclure que (u_n) tend vers $+\infty$

II-2 Exponentielle

Proposition 14:

Pré-requis

Les solutions de l'équation différentielle $y' = -\lambda y$ sont les fonctions $x \mapsto C e^{-\lambda x}$ où C est une constante réelle. Le but de cette question est de démontrer l'existence et l'unicité de la solution z de l'équation différentielle (E'_{λ}) :

 $z' = -(\lambda z + 1)$ telle que z(0) = 1.

1. Montrer que la fonction f définie sur $\mathbb R$ par :

$$f(x) = -\frac{1}{\lambda}$$

est solution de $z' = -(\lambda z + 1)$.

- 2. Montrer que z est solution de $z'=-(\lambda z+1)$ est équivalent à z-f est solution de l'équation différentielle $y'=-\lambda y$.
- 3. En déduire l'ensemble des solutions z de l'équation différentielle $z' = -(\lambda z + 1)$.
- 4. En déduire l'existence et l'unicité de la solution de (E'_{λ}) dont on donnera l'expression z_0

Preuve

1. On pour tout $x \in \mathbb{R}$

$$f'(x) = 0$$
 et $-\left(\lambda \times \frac{-1}{\lambda} + 1\right) = 0$

Par conséquent f est solution de $z' = -(\lambda z + 1)$.

2. On a la série d'équivalence suivante :

$$z \text{ est solution de } z' = -(\lambda z + 1)$$

$$\Leftrightarrow z' = -(\lambda z + 1)$$

$$\Leftrightarrow z' - f' = -(\lambda z + 1) - [-(\lambda f + 1)] \text{ en effet on vient de démontrer que} f' = -(\lambda f + 1)$$

$$\Leftrightarrow (z - f)' = -\lambda z + \lambda f$$

$$\Leftrightarrow (z - f)' = -\lambda (z - f)$$

$$\Leftrightarrow z - f \text{ est solution de l'équation différentielle } y' = -\lambda y$$

3. D'après la première question, il existe au moins une solution à l'équation différentielle $z' = -(\lambda z + 1)$, de plus on vient de montrer que pour z solution de cette équation différentielle, la fonction z - f est solution de $y' = -\lambda y$, équation dont on connaît les solutions d'où :

$$(z-f)(x) = Ce^{-\lambda x}$$

où ${\cal C}$ est une constante.

Ainsi pour tout $x \in \mathbb{R}$ on a :

$$z(x) = Ce^{-\lambda x} - \frac{1}{\lambda}$$

Si on ajoute, de plus, la condition z(0) = 1 alors :

$$1 = C - \frac{1}{\lambda} \iff C = 1 + \frac{1}{\lambda}$$

Ainsi (E' $_{\lambda}$) admet une unique solution qui est

$$z_0(x) = \left(1 + \frac{1}{\lambda}\right) e^{-\lambda x} + \frac{1}{\lambda}$$

Proposition 15:

On suppose connu le résultat suivant :

La fonction $x \mapsto e^x$ est l'unique fonction φ dérivable sur \mathbb{R} telle que $\varphi' = \varphi$, et $\varphi(0) = 1$. Soit a un réel donné.

- 1. Montrer que la fonction f définie sur \mathbb{R} par $f(x) = e^{ax}$ est solution de l'équation y' = ay.
- 2. Soit g une solution de l'équation y' = ay. Soit h la fonction définie sur \mathbb{R} par $h(x) = g(x)e^{-ax}$. Montrer que h est une fonction constante. (On montrera h'=0)
- 3. En déduire l'ensemble des solutions de l'équation y' = ay

1. Montrons que la fonction f définie sur \mathbb{R} par $f(x) = e^{ax}$ est solution de l'équation y' = ay.

$$f'(x) = ae^{ax} = af(x)$$

Par conséquent f est solution de l'équation y' = ay.

2. Soit g une solution de l'équation y' = ay. Soit h la fonction définie sur \mathbb{R} par $h(x) = g(x)e^{-ax}$. On a pour tout $x \in \mathbb{R}$,

$$h'(x) = g'(x)e^{-ax} - ag(x)e^{-ax} = e^{-ax}(g'(x) - ag(x)) = e^{-ax} \times 0 = 0$$

Par conséquent, pour tout $x \in \mathbb{R}$, h(x) = K avec $K \in \mathbb{R}$.

3. D'après la question précédente si g est une solution de y'=ay alors, pour tout $x\in\mathbb{R}$

$$g(x)e^{-ax} = K \iff g(x) = Ke^{ax}$$

Proposition 16:

L'objet de cette question est de démontrer que $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$. On suppose connu le résultat suivant :

$$\forall x \in \mathbb{R}^{+*} \qquad e^x \ge x$$

- 1. On considère la fonction g définie sur $[0; +\infty[$ par $g(x) = e^x \frac{x^2}{2}]$. Montrer que pour tout x de]0; $+\infty[$, $g(x) \ge 0$. (On étudiera la fonction g pour cela).
- 2. En déduire que $\lim_{x\to+\infty}\frac{\mathrm{e}^x}{x}=+\infty$

Preuve

1. On o
Pour

Ains

2. Con 1. On considère la fonction g définie sur $[0; +\infty[$ par $g(x) = e^x - \frac{x^2}{2}]$. Pour tout x de]0; $+\infty[$ on a :

$$g'(x) = e^x - \frac{2x}{2} = e^x - x \ge 0$$

Ainsi la fonction g est strictement croissante et donc pour tout x de]0; $+\infty[$:

$$g(x) \ge g(0) = 1 \ge 0 \Longrightarrow e^x \ge \frac{x^2}{2} \Longrightarrow \frac{e^x}{x} \ge \frac{x}{2}$$

2. Comme $\frac{x}{2}$ tend vers $+\infty$ en $+\infty$ on en déduit immédiatement par comparaison que :

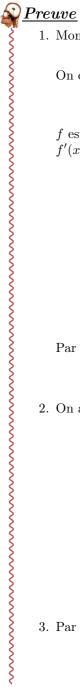
$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$$

Proposition 17:

- 1. Montrer que $e^x > x$, pour cela étudier la fonction f définie sur \mathbb{R} par $f(x) = e^x x$.
- 2. En utilisant l'égalité précédent pour $X = \frac{x}{2}$ démontrer que pour tout $x \in \mathbb{R}^{+*}$ on a

$$\frac{e^x}{x} \ge \frac{x}{4}$$

3. En déduire la limite de $\frac{e^x}{x}$ lorsque x tend vers $+\infty$.



1. Montrons pour cela que $\forall x \in \mathbb{R}$ on a :

$$e^x \ge x$$

On considère la fonction f définie sur $\mathbb R$ par :

$$f(x) = e^x - x$$

f est une fonction dérivable sur $\mathbb R$ et $f'(x)=e^x-1$ $f'(x)=0 \Longleftrightarrow e^x=1 \Longleftrightarrow e^x=e^0 \Longleftrightarrow x=0$

x	$-\infty$	0	+∞	
f'(x)	_	- 0	+	
f		1		

Par conséquent $f(x) \geq 1$ pour tout $x \in \mathbb{R}$ i.e :

$$e^x - x \ge 1 > 0 \Longrightarrow e^x > x$$

2. On a donc, pour tout $x \in \mathbb{R}^{+*}$:

$$e^{\frac{x}{2}} \ge \frac{x}{2}$$

$$\iff (e^{\frac{x}{2}})^2 \ge \frac{x^2}{4}$$

$$\iff e^{\frac{2x}{2}} \ge \frac{x^2}{4}$$

$$\iff e^x \ge \frac{x^2}{4}$$

$$\iff \frac{e^x}{x} \ge \frac{x}{4}$$

3. Par comparaison, comme $\lim_{x\to+\infty}\frac{x}{4}=+\infty$ on en déduit que :

$$\lim_{x \to +\infty} \frac{e^x}{r} = +\infty$$

II-3 Logarithme népérien

Proposition 18:

Prérequis : On rappelle que pour tout a>0 et pour tout b>0 on a :

$$\ln(ab) = \ln(a) + \ln(b).$$

Utiliser le résultat précédent pour démontrer que

$$\ln\left(\frac{1}{b}\right) = -\ln(b)$$
 et que $\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b)$

Preuve

On a donc :

$$0 = \ln 1 = \ln \left(\frac{b}{b}\right) = \ln \left(b \times \frac{1}{b}\right) = \ln b + \ln \left(\frac{1}{b}\right) \Longleftrightarrow \ln \left(\frac{1}{b}\right) = -\ln(b)$$

Puis:

$$\ln\left(\frac{a}{b}\right) = \ln\left(a \times \frac{1}{b}\right) = \ln a + \ln\left(\frac{1}{b}\right) = \ln a - \ln b$$

Proposition 19:

On suppose connue la propriété:

« Pour tout couple $(x \; ; \; y)$ de nombres réels strictement positifs, on a

 $\ln(xy) = \ln(x) + \ln(y). \,$

En déduire que, pour tout nombre réel m strictement positif, on a

$$\ln\left(\sqrt{m}\right) = \frac{1}{2}\ln(m).$$

u Preuve

en appliquant la propriété à $\ln m = \ln (\sqrt{m} \times \sqrt{m})$, on obtient :

$$\ln m = \ln \sqrt{m} + \ln \sqrt{m} = 2 \ln \sqrt{m} \iff \ln \sqrt{m} = \frac{1}{2} \ln m \quad (\text{avec } m > 0).$$

Proposition 20:

Prérequis: on rappelle que : $\lim_{x \to +\infty} \frac{e^x}{x} = +\infty$.

1. Démontrer que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.

On pourra effectuer un changement de variable en posant $X = e^x$

2. En déduire que pour tout entier naturel n non nul : $\lim_{x\to +\infty} \frac{\ln x}{x^n} = 0$.

Preuve

1. Com

Posc

2. On c 1. Commencons par démontrer que $\lim_{x\to +\infty}\frac{\ln x}{x}=0$ en utilisant le fait que

$$\lim_{x\to +\infty}\frac{e^x}{x}=+\infty \Longleftrightarrow \lim_{x\to +\infty}\frac{x}{e^x}=0$$

Posons $X = e^x \iff \ln X = x$ on a alors

$$\lim_{X \to +\infty} \frac{\ln X}{X} = 0$$

2. On en déduit alors pour $n \geq 2$ que

$$\lim_{x\to +\infty}\frac{\ln x}{x^n}=\lim_{x\to +\infty}\frac{1}{x^{n-1}}\times\frac{\ln x}{x}=0$$

 $\operatorname{car} \lim_{x \to +\infty} \frac{1}{x^{n-1}} = 0 \text{ et } \lim_{x \to +\infty} \frac{\ln x}{x} = 0.$

Proposition 21:

On rappelle que la fonction ln est définie et dérivable sur $[0; +\infty[$, positive sur $[1; +\infty[$, et vérifie :

$$\begin{cases} \ln 1 = 0 \\ \text{Pour tous réels strictement positifs } x \text{ et } y, & \ln(xy) = \ln x + \ln y \\ \text{Pour tout réel strictement positif} x, & [\ln(x)]' = \frac{1}{x} \\ \ln(2) \approx 0,69 \text{ à } 10^{-2} \text{ près} \end{cases}$$

1. On considère la fonction f définie sur]0; $+\infty[$ par

$$f(x) = \sqrt{x} - \ln x$$
.

- (a) Etudier les variations de f et en déduire que f admet un minimum sur $[0; +\infty[$.
- (b) En déduire le signe de f puis que, pour tout x > 1, $0 < \frac{\ln x}{r} < \frac{\sqrt{x}}{r}$.
- (c) En déduire que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.
- 2. Soit n un entier naturel non nul. On considère la fonction f_n définie sur]0; $+\infty[$ par :

$$f_n(x) = \frac{\ln x}{x^{\frac{1}{n}}}.$$

En utilisant la question 1., déterminer, si elle existe, la limite en $+\infty$ de la fonction f_n .

On posera
$$X = x^{\frac{1}{n}}$$
 et on en déduire que $\ln X = \frac{\ln x}{n}$

$$f(x) = \sqrt{x} - \ln x.$$

(a) La fonction est une différence de fonctions dérivables sur]0; $+\infty[$, elle est donc dérivable et $f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x} = \frac{\sqrt{x} - 2}{2x}$ qui est du signe du numérateur puisque x > 0.

$$f'(x) = 0 \iff \sqrt{x} = 2 \iff x = 4$$
;

 $f'(x) < 0 \iff 0 < x < 4$; f est décroissante sur cet intervalle

 $f'(x) > 0 \iff x > 4$; f est croissante sur cet intervalle.

Il en résulte que f a un minimum pour x=4 et $f(4)=\sqrt{4}-\ln 42-2\ln 2\approx 0,62$

(b) Le minimum de f étant supérieur à zéro, f(x) > 0 quel que soit $x \in]0 ; +\infty[.$

Donc
$$f(x) > 0 \iff \sqrt{x} - \ln x \iff \sqrt{x} > \ln x \iff \frac{\sqrt{x}}{x} > \frac{\ln x}{x} \iff \frac{\ln x}{x} < \frac{\sqrt{x}}{x}, \text{ car } x > 0.$$

(c) Comme $\frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}}$ et que $\lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$, on obtient par application du théorème des « gendarmes » que $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.

$$f_n(x) = \frac{\ln x}{x^{\frac{1}{n}}}.$$

1. (a)
(b)
(c)
2. On a diagram of the property On peut écrire $f_n(x) = \frac{\ln x}{x^{\frac{1}{n}}} = \frac{\ln x^{n \times \frac{1}{n}}}{x^{\frac{1}{n}}} = \frac{\ln \left(x^{\frac{1}{n}}\right)^n}{x^{\frac{1}{n}}} = n \frac{\ln \left(x^{\frac{1}{n}}\right)}{x^{\frac{1}{n}}}.$ En posant $X = x^{\frac{1}{n}}$, $f_n(x) = n \frac{\ln X}{X}$.

Or $\lim_{x \to +\infty} X = +\infty$ et par composition, $\lim_{X \to +\infty} \frac{\ln X}{X} = 0$ (d'après la question précédente) $\Rightarrow \lim_{x \to +\infty} f_n(x) = 0$

II-4 Intégration

Proposition 22:

On supposera connus les résultats suivants : Soient u et v deux fonctions continues sur un intervalle [a ; b] avec a < b.

- Si $u \ge 0$ sur [a ; b] alors $\int_{a}^{b} u(x) dx \ge 0$.
- Pour tous réels α et β , $\int_a^b [\alpha u(x) + \beta v(x)] dx = \alpha \int_a^b u(x) dx + \beta \int_a^b v(x) dx$. Démontrer que si f et g sont deux fonctions continues sur un intervalle [a; b] avec a < b et si, pour tout x de [a; b], $f(x) \leq g(x)$ alors $\int_a^b f(x) dx \leq \int_a^b g(x) dx$.

Preuve

 $f \text{ et } g \text{ sont deux fonctions continues sur un intervalle } [a \ ; b] \text{ donc } g - f \text{ est continue sur } [a \ ; b] \text{ Pour tout}$ $x \text{ de } [a \ ; b], \ f(x) \leqslant g(x) \text{ donc } g(x) - f(x) \geqslant 0 \text{ donc } \int_a^b [g(x) - f(x)] \, \mathrm{d}x \geqslant 0$ $\int_a^b [g(x) - f(x)] \, \mathrm{d}x = \int_a^b g(x) \, \mathrm{d}x - \int_a^b f(x) \, \mathrm{d}x \text{ et } \int_a^b [g(x) - f(x)] \, \mathrm{d}x \geqslant 0 \text{ donc } \int_a^b g(x) \, \mathrm{d}x - \int_a^b f(x) \, \mathrm{d}x \geqslant 0$ $\text{soit } \int_a^b g(x) \, \mathrm{d}x \geqslant \int_a^b f(x) \, \mathrm{d}x.$

Proposition 23:

Démontrer la formule d'intégration par parties en utilisant la formule de dérivation d'un produit de deux fonctions dérivables, à dérivées continues sur un intervalle [a; b].

On sait que pour tout $t \in [a; b]$ on a :

$$(uv)'(t) = u'(t)v(t) + u(t)v'(t)$$

En intégrant membre à membre, sur le segment [a;b], on obtient :

$$\int_{a}^{b} (uv)'(t)dt = \int_{a}^{b} u'(t)v(t) + u(t)v'(t)dt = \int_{a}^{b} u'(t)v(t)dt + \int_{a}^{b} u(t)v'(t)dt$$

Ainsi:

$$[u(t)v(t)]_a^b = \int_a^b u'(t)v(t)dt + \int_a^b u(t)v'(t)dt$$

i.e :

$$\int_{a}^{b} u(t)v'(t)dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t)v(t)dt$$

III) Probabilités

III-1 Probabilités discrètes

Proposition 24:

Prérequis : On rappelle que deux événements A et B sont indépendants pour la probabilité p si et seulement si:

$$p(A \cap B) = p(A) \times p(B)$$

Soient A et B deux événements associés à une expérience aléatoire

- 1. Démontrer que $p(B) = p(B \cap A) + p(B \cap \overline{A})$.
- 2. Démontrer que, si les événements A et B sont indépendants pour la probabilité p, alors les événements \overline{A} et B le sont également.

$\Omega Preuve$

1. On a $B = (B \cap A) \cup (B \cap \overline{A})$, et il s'agit d'une réunion disjointe, par conséquent :

$$P(B) = P(B \cap A) + P(B \cap \overline{A})$$

2. Comme A et B sont indépendants alors

$$P(A \cap B) = P(A)P(B)$$

Par conséquent, en utilisant 1.

$$P(\overline{A} \cap B) = P(B) - P(A \cap B) = P(B) - P(A)P(B) = P(B)(1 - P(A)) = P(B)P(\overline{A})$$

ightharpoonup Proposition 25:

On rappelle que si n et p sont deux nombres entiers naturels tels que $p \leqslant n$ alors $\binom{n}{p} = \frac{n!}{p!(n-p)!}$. Démontrer que pour tout nombre entier naturel n et pour tout nombre entier naturel p tels que $1 \le p \le n$ on a:

$$\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-1}{p}$$

$$\frac{\binom{n-1}{p-1}}{\binom{n-1}{p-1}} + \binom{n-1}{p} = \frac{(n-1)!}{(p-1)!(n-p)!} + \frac{(n-1)!}{p!(n-1-p)!} = \frac{(n-1)!p + (n-1)!(n-p)}{p!(n-p)!} = \frac{(n-1)!(n-p)!}{p!(n-p)!} = \frac{n!}{p!(n-p)!} = \binom{n}{p}$$

III-2 Probabilités continues

Proposition 26:

On rappelle que pour tout $t \ge 0$, $P(X \le t) = \int_0^t \lambda e^{-\lambda x} dx$.

La fonction R définie sur l'intervalle $[0 ; +\infty[$ par R(t) = P(X > t) est appelée fonction de fiabilité.

- 1. Démontrer que pour tout $t \ge 0$ on a $R(t) = e^{-\lambda t}$.
- 2. Démontrer que la variable X suit une loi de durée de vie sans vieillissement, c'est-à-dire que pour tout réel $s \geqslant 0$, la probabilité conditionnelle $P_{X>t}(X>t+s)$ ne dépend pas du nombre $t\geqslant 0$.

\underline{Preuve}

1. On a, $\forall t \in \mathbb{R}$:

$$R(t) = P(X > t) = 1 - P(X \le t) = 1 - \int_0^t \lambda e^{-\lambda x} dx = 1 - \left[-e^{-\lambda x} \right]_0^t = 1 + e^{-\lambda t} - 1 = e^{-\lambda t}$$

2. Soit s un réel strictement positif on a :

$$P_{X>t}(X>t+s) = \frac{P\left((X>t)\cap(X>t+s)\right)}{P(X>t)} = \frac{P(X>t+s)}{P(X>t)} = \frac{e^{-\lambda(t+s)}}{e^{-\lambda t}} = e^{-\lambda s} = P(X>s)$$

Ainsi X suit bien une loi de durée sans vieillissement.