

1 Métropole Juin 2010

Cet exercice constitue une restitution organisée de connaissances.

Partie A: question de cours

On suppose connus les résultats suivants :

- (1) deux suites (u_n) et (v_n) sont adjacentes lorsque : l'une est croissante, l'autre est décroissante et $u_n v_n$ tend vers 0 quand n tend vers $+\infty$;
- (2) si (u_n) et (v_n) sont deux suites adjacentes telles que (u_n) est croissante et (v_n) est décroissante, alors pour tout n appartenant a \mathbb{N} , on a $u_n \leq v_n$;
- (3) toute suite croissante et majorée est convergente ; toute suite décroissante et minorée est convergente.

Démontrer alors la proposition suivante :

« Deux suites adjacentes sont convergentes et elles ont la même limite ».

Partie B

On conside re une suite (u_n) , définie sur \mathbb{N} dont aucun terme n'est nul. On définit alors la suite (v_n) sur \mathbb{N} par $v_n = \frac{-2}{u_n}$.

Pour chaque proposition, indiquer si elle est vraie ou fausse et proposer une démonstration pour la réponse indiquée. Dans le cas d'une proposition fausse, la démonstration consistera a fournir un contre exemple. Une réponse non démontrée ne rapporte aucun point.

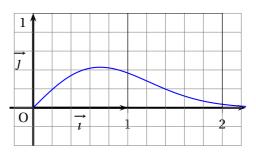
- **1.** Si (u_n) est convergente, alors (v_n) est convergente.
- **2.** Si (u_n) est minorée par 2, alors (v_n) est minorée par -1.
- **3.** Si (u_n) est décroissante, alors (v_n) est croissante.
- **4.** Si (u_n) est divergente, alors (v_n) converge vers zéro.

2 Pondichéry Juin 2009

Soit f la fonction définie sur l'intervalle $[0; +\infty[$ par :

$$f(x) = xe^{-x^2}.$$

On désigne par \mathscr{C} la courbe représentative de la fonction f dans un repere orthonormal $(0, \vec{i}, \vec{j})$ du plan. Cette courbe est représentée ci-contre.



Partie A

1. a. Déterminer la limite de la fonction f en $+\infty$.

(On pourra écrire, pour x différent de 0: $f(x) = \frac{1}{x} \times \frac{x^2}{e^{x^2}}$).

- **b.** Démontrer que f admet un maximum en $\frac{\sqrt{2}}{2}$ et calculer ce maximum.
- **2.** Soit *a* un nombre réel positif ou nul. Exprimer en unités d'aire et en fonction de *a*, l'aire F(a) de la partie du plan limitée par la courbe \mathscr{C} , l'axe des abscisses et les droites d'équations respectives x = 0 et x = a.

Quelle est la limite de F(a) quand a tend vers $+\infty$?

Partie B

On considere la suite (u_n) définie pour tout entier naturel n par :

$$u_n = \int_n^{n+1} f(x) \, \mathrm{d}x.$$

On ne cherchera pas a expliciter u_n .

1. a. Démontrer que, pour tout entier naturel *n* différent de 0 et de 1

$$f(n+1) \leqslant u_n \leqslant f(n)$$
.

- **b.** Quel est le sens de variation de la suite $(u_n)_{n \ge 2}$?
- **c.** Montrer que la suite (u_n) converge. Quelle est sa limite?
- **2. a.** Vérifier que, pour tout entier naturel strictement positif n,

$$F(n) = \sum_{k=0}^{n-1} u_k$$

b. Dans cette question, toute trace de recherche, même incomplete, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.

On donne ci-dessous les valeurs de F(n) obtenues a l'aide d'un tableur, pour n entier compris entre 3 et 7.

n	3	4	5	6	7
F(n)	0,499 938 295 1	0,499 999 943 7	0,5	0,5	0,5

Interpréter ces résultats.

3 La réunion juin 2007

Soit a un nombre réel tel que -1 < a < 0.

On considère la suite u définie par $u_0 = a$, et pour tout entier naturel n, $u_{n+1} = u_n^2 + u_n$.

- 1. Étudier la monotonie de la suite u.
- **2. a.** Soit h la fonction définie sur \mathbb{R} par $h(x) = x^2 + x$. Étudier le sens de variations de la fonction h. En déduire que pour tout x appartenant à l'intervalle]-1; [0], le nombre h(x) appartient aussi à l'intervalle]-1; [0].
 - **b.** Démontrer que pour tout entier naturel n on a : $-1 < u_n < 0$.
- 3. Étudier la convergence de la suite u. Déterminer, si elle existe, sa limite.

4 Métropole Juin 2007

On considère la fonction f définie sur l'intervalle]-1; $+\infty[$ par :

$$f(x) = x - \frac{\ln(1+x)}{1+x}$$
.

La courbe $\mathscr C$ représentative de f est donnée sur le document annexe que l'on complètera et que l'on rendra avec la copie.

Partie A : Étude de certaines propriétés de la courbe $\mathscr C$

- 1. On note f' la fonction dérivée de f. Calculer f'(x) pour tout x de l'intervalle]-1; $+\infty[$.
- **2.** Pour tout x de l'intervalle]-1; $+\infty[$, on pose $N(x) = (1+x)^2 1 + \ln(1+x)$. Vérifier que l'on définit ainsi une fonction strictement croissante sur]-1; $+\infty[$.

Calculer N(0). En déduire les variations de f.

3. Soit \mathcal{D} la droite d'équation y = x. Calculer les coordonnées du point d'intersection de la courbe \mathscr{C} et de la droite \mathcal{D} .

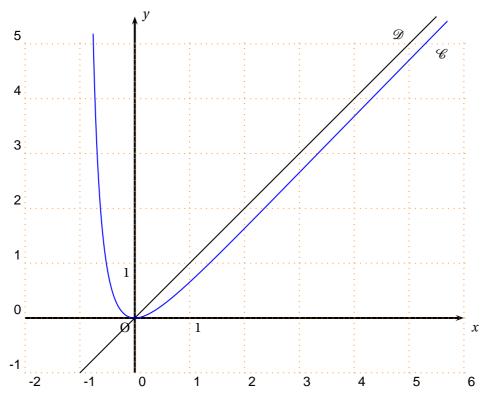
Partie B : Étude d'une suite récurrente définie à partir de la fonction f

- **1.** Démontrer que si $x \in [0; 4]$, alors $f(x) \in [0; 4]$.
- **2.** On considère la suite (u_n) définie par :

$$\begin{cases} u_0 = 4 \text{ et} \\ u_{n+1} = f(u_n) \text{ pour tout } n \text{ de } \mathbb{N}. \end{cases}$$

- **a.** Sur le graphique de l'annexe 2, en utilisant la courbe $\mathscr C$ et la droite $\mathscr D$, placer les points de $\mathscr C$ d'abscisses u_0 , u_1 , u_2 et u_3 .
- **b.** Démontrer que pour tout n de \mathbb{N} on a : $u_n \in [0; 4]$.
- **c.** Étudier la monotonie de la suite (u_n) .
- **d.** Démontrer que la suite (u_n) est convergente. On désigne par ℓ sa limite.

e. Utiliser la partie A pour donner la valeur de ℓ .



5 Asie Juin 2008

On considère plusieurs sacs de billes $S_1, S_2, ..., S_n, ...$ tels que :

- le premier, S_1 , contient 3 billes jaunes et 2 vertes;
- chacun des suivants, S_2 , S_3 , ..., S_n , ... contient 2 billes jaunes et 2 vertes. Le but de cet exercice est d'étudier l'évolution des tirages successifs d'une bille de ces sacs, effectués de la manière suivant :
- on tire au hasard une bille dans S_1 ;
- on place la bille tirée de S_1 dans S_2 , puis on tire au hasard une bille dans S_2 ;
- on place la bille tirée de S_2 dans S_3 , puis on tire au hasard une bille dans S_3 ;
- ect

Pour tout entier $n \ge 1$, on note E_n l'événement : « la bille tirée dans S_n est verte » et on note $p(E_n)$ sa probabilité.

- 1. Mise en évidence d'une relation de récurrence
 - **a.** D'après l'énoncé, donner les valeurs $p(E_1)$, $p_{E_1}(E_2)$, $p_{\overline{E_1}}(E_2)$. En déduire la valeur de $p(E_2)$.
 - **b.** A l'aide d'un arbre pondéré, exprimer $p(E_{n+1})$ en fonction de $p(E_n)$.
- 2. Etude d'une suite

On considère la suite (u_n) définie par :

$$\begin{cases} u_1 = \frac{2}{5} \\ u_{n+1} = \frac{1}{5}u_n + \frac{2}{5} & \forall n \ge 1 \end{cases}$$

- **a.** Démontrer que la suite (u_n) est majorée par $\frac{1}{2}$.
- **b.** Démontrer que (u_n) est croissante.
- **c.** Justifier que la suite (u_n) est convergente puis préciser sa limite.
- **3.** A l'aide des résultats précédents, déterminer l'évolution des probabilités $p(E_n)$.
- **4.** Pour quelles valeurs de l'entier n a-t-on : $0,49999 \le p(E_n) \le 0,5$?