EXERCICES: DÉRIVATION ET APPLICATIONS

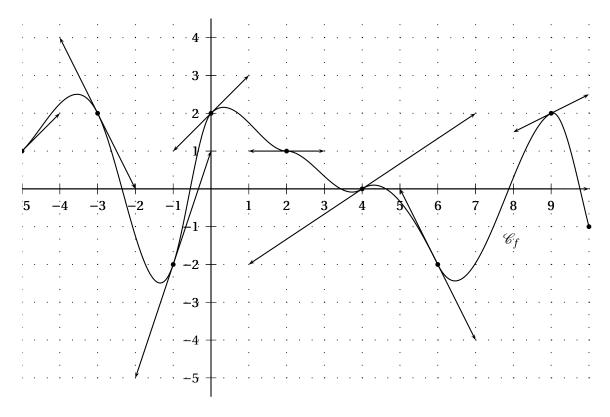
Exercice 1:

La représentation graphique \mathscr{C}_f d'une fonction f est donnée ci-dessous. En chacun des points indiqués, \mathscr{C}_f admet une tangente qui est tracée.

Lisez, en vous servant du quadrillage, les nombres dérivés :

$$f'(-5)$$
 $f'(-3)$ $f'(-1)$ $f'(0)$ $f'(2)$ $f'(4)$ $f'(6)$ $f'(9)$

puis retrouver les équations de chacune des tangentes tracées.



Exercice 2:

Soit f la fonction définie sur \mathbb{R} par $f(x) = x^4 - 2x + 1$. Soit \mathcal{C}_f sa représentation graphique. Donner (en justifiant) l'équation de la tangente à \mathcal{C}_f au point d'abscisse 0.

Exercice 3: [Exercice 3 :] [Exercice 4 :] [Exercice 5 :] [Exercice 5 :] [Exercice 6 :] [Exercice

Soit f la fonction définie sur $\mathbb{R} - \{1\}$ par $f(x) = \frac{2x+3}{x-1}$. On note \mathcal{C}_f sa représentation graphique.

- 1. Calculer la dérivée f' de f
- **2.** Soit A le point d'intersection de \mathscr{C}_f avec l'axe des abscisses. Calculer les coordonnées de A, puis une équation de la tangente T_A à la courbe \mathscr{C}_f en A
- **3.** Soit B le point d'intersection de \mathscr{C}_f avec l'axe des ordonnées. Calculer les coordonnées de B, puis une équation de la tangente T_B à la courbe \mathscr{C}_f en B
- **4.** Tracer sur un même repère T_A , T_B et C_f .

Exercice 4:

On considère la fonction f définie sur \mathbb{R} par : $f(x) = x^3 - 3x - 3$. On note \mathcal{C}_f sa représentation graphique.

- 1. Calculer la dérivée f' de f puis étudier son signe.
- **2.** Dresser le tableau de variations de la fonction f.
- **3.** Déterminer une équation de la tangente T à \mathscr{C}_f au point d'abscisse 0.
- **4.** Tracer T et \mathcal{C}_f (dans un même repère).
- **5.** Démontrer que l'équation f(x) = 0 admet une unique solution α dans l'intervalle [2;3].
- **6.** Donner une valeur approchée de α , par défaut, à 10^{-1} près.

Exercice 5:

Le but de cet exercice est de calculer la limite suivante :

$$\lim_{h \to 0} \frac{(1+h)^{2005} - 1}{h}$$

Pour cela, on considère la fonction f définie sur \mathbb{R} par $f(x) = (1+x)^{2005}$

- 1. Calculer la dérivée f' de la fonction f. Puis calculer f'(0).
- **2.** Calculer le taux de variation de la fonction f entre 0 et h.
- 3. Conclure.

Exercice 6:

On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{x}{1+|x|}$. Etudier la dérivabilité de f en 0.

Exercice 7:

Une parabole P admet, dans un repère $(O; \vec{i}, \vec{j})$, une équation du type :

$$y = ax^2 + bx + c \qquad a \neq 0$$

Déterminer les coefficients a, b et c sachant que P coupe l'axe des abscisses $(O; \vec{i})$ au point A d'abscisse 3, l'axe des ordonnées $(0; \vec{i})$ au point B d'ordonnée 2 et qu'elle admette en ce point la droite d'équation y = x + 2 pour tangente. Contrôler graphiquement vos résultats. Indiquer l'abscisse du second point d'intersection de P avec $(O; \vec{i})$

Exercice 8 :

On considère la fonction f définie par $f(x) = \frac{x}{x^2 + 1}$ sur \mathbb{R}

- 1. Démontrer que f est une fonction impaire, ie : $\begin{cases} \text{L'ensemble } D_f \text{ de définition de } f \text{ est symétrique par rapport à 0} \\ \text{Pour tout } x \in D_f \text{ , on a } f(-x) = -f(x) \end{cases}$
- **2.** Calculer la dérivée f' de la fonction f
- **3.** Quel est le signe du dénominateur de f'(x)?
- **4.** Résoudre l'inéquation $f'(x) \ge 0$
- 5. Dresser le tableau de variations de la fonction f en précisant la valeur M de son maximum et la valeur *m* de son minimum
- **6.** Tracer (soigneusement) la représentation graphique de la fonction f sur l'intervalle [-4;4]